題目列表(包括答案和解析)
若的展開式中第3項與第7項的二項式系數(shù)相等,則該展開式中
的系數(shù)為_________.
【解析】因為展開式中的第3項和第7項的二項式系數(shù)相同,即,所以
,所以展開式的通項為
,令
,解得
,所以
,所以
的系數(shù)為
.
設(shè)數(shù)列的各項均為正數(shù).若對任意的
,存在
,使得
成立,則稱數(shù)列
為“Jk型”數(shù)列.
(1)若數(shù)列是“J2型”數(shù)列,且
,
,求
;
(2)若數(shù)列既是“J3型”數(shù)列,又是“J4型”數(shù)列,證明:數(shù)列
是等比數(shù)列.
【解析】1)中由題意,得,
,
,
,…成等比數(shù)列,且公比
,
所以.
(2)中證明:由{}是“j4型”數(shù)列,得
,…成等比數(shù)列,設(shè)公比為t. 由{
}是“j3型”數(shù)列,得
,…成等比數(shù)列,設(shè)公比為
;
,…成等比數(shù)列,設(shè)公比為
;
…成等比數(shù)列,設(shè)公比為
;
已知正項數(shù)列的前n項和
滿足:
,
(1)求數(shù)列的通項
和前n項和
;
(2)求數(shù)列的前n項和
;
(3)證明:不等式 對任意的
,
都成立.
【解析】第一問中,由于所以
兩式作差,然后得到
從而得到結(jié)論
第二問中,利用裂項求和的思想得到結(jié)論。
第三問中,
又
結(jié)合放縮法得到。
解:(1)∵ ∴
∴
∴ ∴
………2分
又∵正項數(shù)列,∴
∴
又n=1時,
∴ ∴數(shù)列
是以1為首項,2為公差的等差數(shù)列……………3分
∴
…………………4分
∴
…………………5分
(2) …………………6分
∴
…………………9分
(3)
…………………12分
又
,
∴不等式 對任意的
,
都成立.
設(shè)函數(shù)f(x)=在[1,+∞
上為增函數(shù).
(1)求正實數(shù)a的取值范圍;
(2)比較的大小,說明理由;
(3)求證:(n∈N*, n≥2)
【解析】第一問中,利用
解:(1)由已知:,依題意得:
≥0對x∈[1,+∞
恒成立
∴ax-1≥0對x∈[1,+∞恒成立 ∴a-1≥0即:a≥1
(2)∵a=1 ∴由(1)知:f(x)=在[1,+∞)上為增函數(shù),
∴n≥2時:f()=
(3) ∵ ∴
已知是公差為d的等差數(shù)列,
是公比為q的等比數(shù)列
(Ⅰ)若 ,是否存在
,有
?請說明理由;
(Ⅱ)若(a、q為常數(shù),且aq
0)對任意m存在k,有
,試求a、q滿足的充要條件;
(Ⅲ)若試確定所有的p,使數(shù)列
中存在某個連續(xù)p項的和式數(shù)列中
的一項,請證明.
【解析】第一問中,由得
,整理后,可得
、
,
為整數(shù)
不存在
、
,使等式成立。
(2)中當(dāng)時,則
即
,其中
是大于等于
的整數(shù)
反之當(dāng)時,其中
是大于等于
的整數(shù),則
,
顯然,其中
、
滿足的充要條件是
,其中
是大于等于
的整數(shù)
(3)中設(shè)當(dāng)
為偶數(shù)時,
式左邊為偶數(shù),右邊為奇數(shù),
當(dāng)為偶數(shù)時,
式不成立。由
式得
,整理
當(dāng)時,符合題意。當(dāng)
,
為奇數(shù)時,
結(jié)合二項式定理得到結(jié)論。
解(1)由得
,整理后,可得
、
,
為整數(shù)
不存在
、
,使等式成立。
(2)當(dāng)時,則
即
,其中
是大于等于
的整數(shù)反之當(dāng)
時,其中
是大于等于
的整數(shù),則
,
顯然,其中
、
滿足的充要條件是
,其中
是大于等于
的整數(shù)
(3)設(shè)當(dāng)
為偶數(shù)時,
式左邊為偶數(shù),右邊為奇數(shù),
當(dāng)為偶數(shù)時,
式不成立。由
式得
,整理
當(dāng)時,符合題意。當(dāng)
,
為奇數(shù)時,
由
,得
當(dāng)
為奇數(shù)時,此時,一定有
和
使上式一定成立。
當(dāng)
為奇數(shù)時,命題都成立
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com