題目列表(包括答案和解析)
()如圖,在五面體ABCDEF中,F(xiàn)A 平面ABCD, AD//BC//FE,AB
AD,M為EC的中點,AF=AB=BC=FE=
AD
(I) 求異面直線BF與DE所成的角的大;
(II) 證明平面AMD平面CDE;
(III)求二面角A-CD-E的余弦值。
在三棱錐 中,
,
.
(1)求三棱錐的體積;
(2)求二面角的大小;
(3)求異面直線SB和AC所成角的余弦值。
已知斜三棱柱,
,
,
在底面
上的射影恰為
的中點
,又知
。
(I)求證:平面
;
(II)求二面角余弦值的大小。
(09年大豐調(diào)研)(10分)已知斜三棱柱,
,
,
在底面
上的射影恰為
的中點
,又知
。
(I)求證:平面
;
(II)求到平面
的距離;
(III)求二面角余弦值的大小。
一、選擇題(本大題共10小題,每題5分,共50分)
1.C 2.A 3.B 4.D 5.B
6.B 7.C 8.D 9.D 10.A
二、填空題(本大題共7小題,每題4分,共28分)
11.2 12.45 13. 14.
15.1 16.144 17.
三、解答題(本大題共5小題,第18―20題各14分,第21、22題各15分,共72分)
18.(1)因為(4分)
所以
(Ⅱ)由(I)得,
(10分)
因為所以
,所以
(12分)
因此,函數(shù)的值域為
。(14分)
19.(I)因為,所以
平面
。 (3分)
又因為平面
所以
①(5分)
在中,
,由余弦定理,
得
因為,所以
,即
。② (7分)
由①,②及,可得
平面
(8分)
(Ⅱ)方法一;
在中,過
作
于
,則
,所以
平面
在中,過
作
于
,連
,則
平面
,
所以
為二面角
的平面角 (11分)
在中,求得
,
在中,求得
,
所以所以
。
因此,所求二面角的大小的余弦值為
。
方法二:
如圖建立空間直角坐標系 (9分)
則
設(shè)平面
的法向量為
,
則
所以,取
,
則 (11分)
又設(shè)平面的法向量為
,
則
,取
,則
(13分)
所以,
因此,所求二面角的大小余弦值為
。
20.(I)(6分)
(Ⅱ)
1
2
3
4
5
(14分)
21.(I)由題意得 (3分)
解得(5分)
所以橢圓方程為 (6分)
(Ⅱ)直線方程為
,則
的坐標為
(7分)
設(shè)則
,
直線方程為
令
,得
的橫坐標為
① (10分)
又得
得
, (12分)
代入①得, (14分)
得,
為常數(shù)4 (15分)
22.(I) (2分)
由于,故嘗
時,
,所以
, (4分)
故函數(shù)在
上單調(diào)遞增。 (5分)
(Ⅱ)令,得到
(6分)
的變化情況表如下: (8分)
0
一
0
+
極小值
因為函數(shù) 有三個零點,所以
有三個根,
有因為當時,
,
所以,故
(10分)
(Ⅲ)由(Ⅱ)可知在區(qū)間
上單調(diào)遞減,在區(qū)間
上單調(diào)遞增。
所以 (11分)
記則
(僅在
時取到等號),
所以遞增,故
,
所以 (13分)
于是
故對
,所以
(15分)
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com