8天堂资源在线,国产成人久久av免费高潮,国产精品亚洲综合色区韩国,国产欧美va天堂在线观看视频,xx色综合

C. D. 查看更多

 

題目列表(包括答案和解析)

C.選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系下,已知圓O:和直線
(1)求圓O和直線的直角坐標(biāo)方程;(2)當(dāng)時,求直線與圓O公共點的一個極坐標(biāo).
D.選修4-5:不等式證明選講
對于任意實數(shù),不等式恒成立,試求實數(shù)的取值范圍.

查看答案和解析>>

C.選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系下,已知圓O:和直線,
(1)求圓O和直線的直角坐標(biāo)方程;(2)當(dāng)時,求直線與圓O公共點的一個極坐標(biāo).
D.選修4-5:不等式證明選講
對于任意實數(shù),不等式恒成立,試求實數(shù)的取值范圍.

查看答案和解析>>

C

[解析] 由基本不等式,得abab,所以ab,故B錯;≥4,故A錯;由基本不等式得,即,故C正確;a2b2=(ab)2-2ab=1-2ab≥1-2×,故D錯.故選C.

查看答案和解析>>

定義域為R的函數(shù)滿足,且當(dāng)時,,則當(dāng)時,的最小值為( )

A B C D

 

查看答案和解析>>

.過點作圓的弦,其中弦長為整數(shù)的共有  (  )    

A.16條          B. 17條        C. 32條            D. 34條

 

查看答案和解析>>

 

一、選擇題

1―5BABAB  6―10DBABA  11―12CC

  1. <rt id="pdauf"><menu id="pdauf"><video id="pdauf"></video></menu></rt>

      20081006

      13.      14.

      15.        16. f()<f(1)< f(

      三、解答題

      17.解:(Ⅰ),    

       

      =是奇函數(shù),,

         (Ⅱ)由(Ⅰ)得

      從而上增函數(shù),

      上減函數(shù),

      所以時取得極大值,極大值為,時取得極小值,極小值為

      18.解:(Ⅰ)設(shè)A隊得分為2分的事件為,

      對陣隊員

      隊隊員勝

      隊隊員負

       

       

       

       

       

       

       

       

       

       

       

       

         

       

      0

      1

      2

      3

      的分布列為:                          

                                                                ………… 8分

      于是 , …………9分

      ,    ∴     ………… 11分

      由于, 故B隊比A隊實力較強.    …………12分

      19.解:(1)由   ∴……………2分

      由已知得,  

      .  從而.……………4分

         (2) 由(1)知,,

      值域為.…………6分

      ∴由已知得:  于是……………8分

      20.解:(Ⅰ),

      化為,    或 

      解得,原不等式的解集為

         (Ⅱ)

      ①當(dāng)時,在區(qū)間[]上單調(diào)遞增,從而  

      ②當(dāng)時,對稱軸的方程為,依題意得  解得

      綜合①②得

      21.解:(Ⅰ)

      =0 得

      解不等式,得

      解不等式,,

      從而的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是

         (Ⅱ)將兩邊取對數(shù)得,

      因為,從而

      由(Ⅰ)得當(dāng),

      要使對任意成立,當(dāng)且僅當(dāng),得

       

      22.(Ⅰ)解:是二次函數(shù),且的解集是,

      *可設(shè)

      在區(qū)間上的最大值是

      由已知,得

         (Ⅱ)方程等價于方程

      設(shè),

      當(dāng)時,是減函數(shù);

      當(dāng)時,是增函數(shù).

      *方程在區(qū)間內(nèi)分別有惟一實數(shù)根,

      而在區(qū)間內(nèi)沒有實數(shù)根.

      所以存在惟一的自然數(shù)

      使得方程在區(qū)間內(nèi)有且只有兩個不同的實數(shù)根.

       

       

       

       

       

      www.ks5u.com

       

       

       

          1. <meter id="pdauf"></meter>

          2. <ul id="pdauf"></ul>
          3. <thead id="pdauf"></thead>