題目列表(包括答案和解析)
某班主任對全班50名學(xué)生進行遲到與學(xué)習(xí)成績是否有關(guān)的調(diào)查,數(shù)據(jù)如下表:
|
已知函數(shù)。
(1)求函數(shù)的最小正周期和最大值;
(2)求函數(shù)的增區(qū)間;
(3)函數(shù)的圖象可以由函數(shù)的圖象經(jīng)過怎樣的變換得到?
【解析】本試題考查了三角函數(shù)的圖像與性質(zhì)的運用。第一問中,利用可知函數(shù)的周期為
,最大值為
。
第二問中,函數(shù)的單調(diào)區(qū)間與函數(shù)
的單調(diào)區(qū)間相同。故當(dāng)
,解得x的范圍即為所求的區(qū)間。
第三問中,利用圖像將的圖象先向右平移
個單位長度,再把橫坐標(biāo)縮短為原來的
(縱坐標(biāo)不變),然后把縱坐標(biāo)伸長為原來的
倍(橫坐標(biāo)不變),再向上平移1個單位即可。
解:(1)函數(shù)的最小正周期為
,最大值為
。
(2)函數(shù)的單調(diào)區(qū)間與函數(shù)
的單調(diào)區(qū)間相同。
即
所求的增區(qū)間為
,
即
所求的減區(qū)間為
,
。
(3)將的圖象先向右平移
個單位長度,再把橫坐標(biāo)縮短為原來的
(縱坐標(biāo)不變),然后把縱坐標(biāo)伸長為原來的
倍(橫坐標(biāo)不變),再向上平移1個單位即可。
學(xué)習(xí)成績前26名 | 學(xué)習(xí)成績后24名 | 總數(shù) | |
從不遲到的 | 18 | 9 | 27 |
有過遲到的 | 8 | 15 | 23 |
總數(shù) | 26 | 24 | 50 |
50×(18×15-8×9)2 |
27×23×24×26 |
P(K2≥k) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
A.97.5% | B.95% | C.90% | D.無充分根據(jù) |
已知遞增等差數(shù)列滿足:
,且
成等比數(shù)列.
(1)求數(shù)列的通項公式
;
(2)若不等式對任意
恒成立,試猜想出實數(shù)
的最小值,并證明.
【解析】本試題主要考查了數(shù)列的通項公式的運用以及數(shù)列求和的運用。第一問中,利用設(shè)數(shù)列公差為
,
由題意可知,即
,解得d,得到通項公式,第二問中,不等式等價于
,利用當(dāng)
時,
;當(dāng)
時,
;而
,所以猜想,
的最小值為
然后加以證明即可。
解:(1)設(shè)數(shù)列公差為
,由題意可知
,即
,
解得或
(舍去). …………3分
所以,. …………6分
(2)不等式等價于,
當(dāng)時,
;當(dāng)
時,
;
而,所以猜想,
的最小值為
. …………8分
下證不等式對任意
恒成立.
方法一:數(shù)學(xué)歸納法.
當(dāng)時,
,成立.
假設(shè)當(dāng)時,不等式
成立,
當(dāng)時,
,
…………10分
只要證 ,只要證
,
只要證 ,只要證
,
只要證 ,顯然成立.所以,對任意
,不等式
恒成立.…14分
方法二:單調(diào)性證明.
要證
只要證 ,
設(shè)數(shù)列的通項公式
, …………10分
, …………12分
所以對,都有
,可知數(shù)列
為單調(diào)遞減數(shù)列.
而,所以
恒成立,
故的最小值為
.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com