8天堂资源在线,国产成人久久av免费高潮,国产精品亚洲综合色区韩国,国产欧美va天堂在线观看视频,xx色综合

結(jié)論:① ,② ,③ 中.可以由上述已知條件推出的結(jié)論有 .(把你認(rèn)為正確的結(jié)論序號(hào)都填上) 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)如圖,在底面邊長為1,側(cè)棱長為2的正四棱柱ABCD-A1B1C1D1中,P是側(cè)棱CC1上的一點(diǎn),CP=m.
(Ⅰ)試確定m,使直線AP與平面BDD1B1所成角為60°;
(Ⅱ)在線段A1C1上是否存在一個(gè)定點(diǎn)Q,使得對(duì)任意的m,D1Q⊥AP,并證明你的結(jié)論.

查看答案和解析>>

關(guān)于x的函數(shù)f(x)=sin(x+φ)有以下命題:
①對(duì)任意的φ,f(x)都是非奇非偶函數(shù);
②不存在φ,使f(x)既是奇函數(shù),又是偶函數(shù);
③存在φ,使f(x)是奇函數(shù);
④對(duì)任意的φ,f(x)都不是偶函數(shù).
其中一個(gè)假命題的序號(hào)是
 
.因?yàn)楫?dāng)φ=
 
時(shí),該命題的結(jié)論不成立.

查看答案和解析>>

對(duì)于數(shù)據(jù)組
精英家教網(wǎng)
(1)做散點(diǎn)圖,你能直觀上能得到什么結(jié)論?
(2)求線性回歸方程.

查看答案和解析>>

關(guān)于函數(shù)f(x)=sin2x-(
2
3
|x|+
1
2
,有下面四個(gè)結(jié)論,其中正確結(jié)論的個(gè)數(shù)為( 。
①f(x)是奇函數(shù)②當(dāng)x>2003時(shí),f(x)>
1
2
恒成立③f(x)的最大值是
3
2
④f(x)的最小值是-
1
2
A、1B、2C、3D、4

查看答案和解析>>

精英家教網(wǎng)如圖,在正四棱柱ABCD-A1B1C1D1中,E、F分別是AB1、BC1的中點(diǎn),則以下結(jié)論中不成立的是(  )
A、EF與BB1垂直B、EF與BD垂直C、EF與CD異面D、EF與A1C1異面

查看答案和解析>>

一、

1.B       2.A      3.D      4.A      5.C      6.A      7.D      8.B       9.D      10.A

11.A    12.B

1.由題意知,解得

2.由,化得,解得

3.,又

4.設(shè)的角為的斜率的斜率

,于是

5.由條件,解,則

6.不等式組化得 

       平面區(qū)域如圖所示,陰影部分面積:

      

7.由已知得,而

       ,則是以3為公比的等比數(shù)列.

8.,于是,而解得

9.函數(shù)可化為,令,

       可得其對(duì)稱中心為,當(dāng)時(shí)得對(duì)稱中心為

10.

11.由條件得:,則所以

12.沿球面距離運(yùn)動(dòng)路程最短,最短路程可以選

      

二、填空題

13.

       ,由垂直得.即

       ,解得

14.99

       在等差數(shù)列中,也是等差數(shù)列,由等差中項(xiàng)定理得

       所以

15.

由題意知,直線是拋物線的準(zhǔn)線,而的距離等于到焦點(diǎn)的距離.即求點(diǎn)到點(diǎn)的距離與到點(diǎn)的距離和的最小值,就是點(diǎn)與點(diǎn)的距離,為

16.②

一方面.由條件,,得,故②正確.

另一方面,如圖,在正方體中,把、分別記作,平面、平面、平面分別記作、、,就可以否定①與③.

三、解答題

17.解:,且

       ,即

       又

      

      

       由余弦定理,

       ,故

18.解:(1)只有甲解出的概率:

       (2)只有1人解出的概率:

19.解:(1)由已知,∴數(shù)列的公比,首項(xiàng)

             

             

              又?jǐn)?shù)列中,

           ∴數(shù)列的公差,首項(xiàng)

             

             

             

             

             

           ∴數(shù)列、的通項(xiàng)公式依次為

(2),

      

      

      

      

      

20.(1)證明;在直三棱柱中,

             

              又

             

              ,而,

           ∴平面平面

(2)解:取中點(diǎn),連接于點(diǎn),則

與平面所成角大小等于與平面所成角的大小.

中點(diǎn),連接,則等腰三角形中,

又由(1)得

為直線與面所成的角

,

∴直線與平面所成角的正切值為

(注:本題也可以能過建立空間直角坐標(biāo)系解答)

21.解:(1)設(shè)橢圓方程為,雙曲線方程為

              ,半焦距

              由已知得,解得,則

              故橢圓及雙曲線方程分別為

       (2)向量的夾解即是,設(shè),則

              由余弦定理得           ①

        由橢圓定義得                    ②

        由雙曲線定義得                   ③

        式②+式③得,式②式③得

將它們代入式①得,解得,所以向量夾角的余弦值為

22.解(1)由處有極值

                               ①

處的切線的傾斜角為

          ②

由式①、式②解得

設(shè)的方程為

∵原點(diǎn)到直線的距離為,

解得

不過第四象限,

所以切線的方程為

切點(diǎn)坐標(biāo)為(2,3),則,

解得

(2)

      

       上遞增,在上遞減

       而

       在區(qū)間上的最大值是3,最小值是

 


同步練習(xí)冊(cè)答案