題目列表(包括答案和解析)
已知拋物線及定點(diǎn)
是拋物線上的點(diǎn),設(shè)直線
與拋物線的另一交點(diǎn)分別為
.求證:當(dāng)點(diǎn)
在拋物線上變動時(只要
存在且
與
是不同兩點(diǎn)),直線
恒過一定點(diǎn),并求出定點(diǎn)的坐標(biāo)
設(shè)和
是拋物線
上的兩個動點(diǎn),在
和
處的拋物線切線相互垂直,已知由
及拋物線的頂點(diǎn)
所成的三角形重心的軌跡也是一拋物線,記為
.對
重復(fù)以上過程,又得一拋物線
,以此類推.設(shè)如此得到拋物線的序列為
,若拋物線
的方程為
,經(jīng)專家計算得,
,
,
,
,
.則
= .
設(shè)和
是拋物線
上的兩個動點(diǎn),在
和
處的拋物線切線相互垂直,已知由
及拋物線的頂點(diǎn)
所成的三角形重心的軌跡也是一拋物線,記為
.對
重復(fù)以上過程,又得一拋物線
,以此類推.設(shè)如此得到拋物線的序列為
,若拋物線
的方程為
,經(jīng)專家計算得,
,
,
,
,
.
則=___▲___.
設(shè)和
是拋物線
上的兩個動點(diǎn),且在
和
處的拋物線切線相互垂直,已知由
及拋物線
的頂點(diǎn)所成的三角形重心的軌跡也是一拋物線,記為
.對
重復(fù)以上過程,又得一拋物線
,余類推.設(shè)如此得到拋物線的序列為
,
,
,若拋物線
的方程為
,經(jīng)專家計算得,
,
,
,
,
.
則 .:Z_x
一、
1.B 2.A 3.D 4.A 5.C 6.A 7.D 8.B 9.D 10.A
11.A 12.B
1.由題意知,解得
.
2.由得
,化得
,解得
.
3.,又
.
4.設(shè)到
的角為
的斜率
的斜率
,
則,于是
.
5.由條件,解即
得
,則
.
6.不等式組化得
平面區(qū)域如圖所示,陰影部分面積:
.
7.由已知得,而
,則
是以3為公比的等比數(shù)列.
8.即
,于是
,而
解得
.
9.函數(shù)可化為,令
,
可得其對稱中心為,當(dāng)
時得對稱中心為
.
10..
11.由條件得:,則
得
所以
.
12.沿球面距離運(yùn)動路程最短,最短路程可以選
.
二、填空題
13.
,由
與
垂直得
.即
,解得
14.99
在等差數(shù)列中,
也是等差數(shù)列,由等差中項定理得
.
所以.
15.
由題意知,直線是拋物線
的準(zhǔn)線,而
到
的距離等于
到焦點(diǎn)
的距離.即求點(diǎn)
到點(diǎn)
的距離與到點(diǎn)
的距離和的最小值,就是點(diǎn)
與點(diǎn)
的距離,為
.
16.②
一方面.由條件,,得
,故②正確.
另一方面,如圖,在正方體中,把
、
分別記作
、
,平面
、平面
、平面
分別記作
、
、
,就可以否定①與③.
三、解答題
17.解:,且
,即
又.
由余弦定理,
,故
.
18.解:(1)只有甲解出的概率:.
(2)只有1人解出的概率:.
19.解:(1)由已知,∴數(shù)列
的公比
,首項
又?jǐn)?shù)列中,
∴數(shù)列的公差
,首項
∴數(shù)列、
的通項公式依次為
.
(2),
.
20.(1)證明;在直三棱柱中,
面
又
面
,而
面
,
∴平面平面
(2)解:取中點(diǎn)
,連接
交
于點(diǎn)
,則
.
與平面
所成角大小等于
與平面
所成角的大。
取中點(diǎn)
,連接
、
,則等腰三角形
中,
.
又由(1)得面
.
面
為直線
與面
所成的角
又
,
∴直線與平面
所成角的正切值為
.
(注:本題也可以能過建立空間直角坐標(biāo)系解答)
21.解:(1)設(shè)橢圓方程為,雙曲線方程為
,半焦距
由已知得,解得
,則
故橢圓及雙曲線方程分別為及
.
(2)向量與
的夾解即是
,設(shè)
,則
由余弦定理得 ①
由橢圓定義得 ②
由雙曲線定義得 ③
式②+式③得,式②
式③得
將它們代入式①得,解得
,所以向量
與
夾角的余弦值為
.
22.解(1)由得
在
處有極值
①
又在
處的切線的傾斜角為
②
由式①、式②解得
設(shè)的方程為
∵原點(diǎn)到直線
的距離為
,
解得.
又不過第四象限,
.
所以切線的方程為
.
切點(diǎn)坐標(biāo)為(2,3),則,
解得
.
(2)
在
上遞增,在
上遞減
而
在區(qū)間
上的最大值是3,最小值是
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com