題目列表(包括答案和解析)
C.選修4-4:坐標系與參數(shù)方程
在極坐標系下,已知圓O:和直線
,
(1)求圓O和直線的直角坐標方程;(2)當
時,求直線
與圓O公共點的一個極坐標.
D.選修4-5:不等式證明選講
對于任意實數(shù)和
,不等式
恒成立,試求實數(shù)
的取值范圍.
C
[解析] 由基本不等式,得ab≤=
=
-ab,所以ab≤
,故B錯;
+
=
=
≥4,故A錯;由基本不等式得
≤
=
,即
+
≤
,故C正確;a2+b2=(a+b)2-2ab=1-2ab≥1-2×
=
,故D錯.故選C.
.定義域為R的函數(shù)滿足
,且當
時,
,則當
時,
的最小值為( )
(A) (B)
(C)
(D)
.過點作圓
的弦,其中弦長為整數(shù)的共有 ( 。
A.16條 B. 17條 C. 32條 D. 34條
一、 1.A 2.C 3.C 4.B 5.A 6.C
7.D 8.C 9.B 10.D 11.A 12.C
二、13. 14.0 15.
16.①②④ .
三、
17.解:解: ---------------------------------3分
---------------------------------------------------6分
因為, ---------------------------------------------------------------8分
所以 ---------------------------------------------------------------------10分
解得,故實數(shù)
的取值范圍為[0,1] --------------------------------------12分
18.解:由條件知,
----------------4分
①當時,
---------------------------------------------------------------------------------------7分
②當
----------------------------------------------------------------------------------------------10分
縱上所述,的值域為
-----------------------------------------------------------------------12分19.(I)解:因為α為第二象限的角,
,
所以,,------------------------------------------------2分
------------------------------------------------------------------ 4分
又,
所以, ---------------------------------------- 6分
(II)解:因為β為第三象限的角,,
所以,------------------------------------------------------------8分
又,--------------------10分
所以, -----------------------------12分
20.解:(I)由,得
,
所以
整理,得 --------------------------------------------------------4分
解得:,∴
--------------------------------------------------------6分
(II)由余弦定理得:,即
---------①
又,∴
------------------------------------------------②,
①②聯(lián)立解得,-------------------------------------------------------------------- 10分
∴--------------------------------------------------12分
21.解:(Ⅰ)∵f(x)圖象過點(1,8),∴a−5+c+d=8,
即a+c+d=13 ① …………………………1分
又f/(x)=3ax2−10x+c,且點(1,8)處的切線經(jīng)過(3,0),
∴f/(1)== −4,即
∴
又∵f(x)在x=3 處有極值,∴f/(3)=0,
即
聯(lián)立①、②、③解得a=1,c=3,d=9,
∴f(x)=x3−5x2+3x+9 …………………………6分
(Ⅱ)f/(x)=3x2−10x+3=(3x−1)(x−3)
由f/(x)=0得x1=,x2=3
………………………7分
當x∈(0,)時,f/(x)>0,f(x)單調(diào)遞增,
∴f(x)>f(0)=9 ………………………9分
當x∈(,3)時,f/(x)<0,f(x)單調(diào)遞減,
∴f(x)>f(3)=0.
又∵f(3)=0,
∴當m>3時,f(x)>0在(0,m)內(nèi)不恒成立. ………………………11分
∴當且僅當m∈(0,3]時,f(x)>0在(0,m)內(nèi)恒成立.
所以m取值范圍為(0,3] . ………………………12分
22.(I)解:對函數(shù) ------------------------------------- 2分
要使上是增函數(shù),只要
上恒成立,
即上恒成立------------------------------------------------4分
因為上單調(diào)遞減,所以
上的最小值是
,
注意到a > 0,所以a的取值范圍是 ----------------------------------------------6分
(II)解:①當時,由(I)知,
上是增函數(shù),
此時上的最大值是
---------------------------8分
②當,
解得 ---------------------------------------------------------------------10分
因為,
所以上單調(diào)遞減,
此時上的最大值是
----------------------13分
綜上,當時,
上的最大值是
;
當時,
上的最大值是
--------------------------14分
|