題目列表(包括答案和解析)
已知曲線的參數(shù)方程是
(
是參數(shù)),以坐標(biāo)原點為極點,
軸的正半軸為極軸建立極坐標(biāo)系,曲線
:的極坐標(biāo)方程是
=2,正方形ABCD的頂點都在
上,且A,B,C,D依逆時針次序排列,點A的極坐標(biāo)為(2,
).
(Ⅰ)求點A,B,C,D的直角坐標(biāo);
(Ⅱ)設(shè)P為上任意一點,求
的取值范圍.
【命題意圖】本題考查了參數(shù)方程與極坐標(biāo),是容易題型.
【解析】(Ⅰ)由已知可得,
,
,
,
即A(1,),B(-
,1),C(―1,―
),D(
,-1),
(Ⅱ)設(shè),令
=
,
則=
=
,
∵,∴
的取值范圍是[32,52]
現(xiàn)有4個人去參加某娛樂活動,該活動有甲、乙兩個游戲可供參加者選擇.為增加趣味性,約定:每個人通過擲一枚質(zhì)地均勻的骰子決定自己去參加哪個游戲,擲出點數(shù)為1或2的人去參加甲游戲,擲出點數(shù)大于2的人去參加乙游戲.
(Ⅰ)求這4個人中恰有2人去參加甲游戲的概率;
(Ⅱ)求這4個人中去參加甲游戲的人數(shù)大于去參加乙游戲的人數(shù)的概率;
(Ⅲ)用X,Y分別表示這4個人中去參加甲、乙游戲的人數(shù),記,求隨機(jī)變量
的分布列與數(shù)學(xué)期望
.
【解析】依題意,這4個人中,每個人去參加甲游戲的概率為,去參加乙游戲的概率為
.
設(shè)“這4個人中恰有i人去參加甲游戲”為事件
則.
(1)這4個人中恰有2人去參加甲游戲的概率
(2)設(shè)“這4個人中去參加甲游戲的人數(shù)大于去參加乙游戲的人數(shù)”為事件B,則.由于
互斥,故
所以,這個人中去參加甲游戲的人數(shù)大于去參加乙游戲的人數(shù)的概率為.
(3)的所有可能取值為0,2,4.由于
互斥,
互斥,故
所以的分布列是
|
0 |
2 |
4 |
P |
|
|
|
隨機(jī)變量的數(shù)學(xué)期望
.
已知數(shù)列滿足
且對一切
,
有
(Ⅰ)求證:對一切
(Ⅱ)求數(shù)列通項公式.
(Ⅲ)求證:
【解析】第一問利用,已知表達(dá)式,可以得到,然后得到
,從而求證
。
第二問,可得數(shù)列的通項公式。
第三問中,利用放縮法的思想,我們可以得到
然后利用累加法思想求證得到證明。
解: (1) 證明:
在本次數(shù)學(xué)期中考試試卷中共有10道選擇題,每道選擇題有4個選項,其中只有一個是正確的。評分標(biāo)準(zhǔn)規(guī)定:“每題只選一項,答對得5分,不答或答錯得0分”.某考生每道題都給出一個答案, 且已確定有7道題的答案是正確的,而其余題中,有1道題可判斷出兩個選項是錯誤的,有一道可以判斷出一個選項是錯誤的,還有一道因不了解題意只能亂猜。試求出該考生:
(1)選擇題得滿分(50分)的概率;
(2)選擇題所得分?jǐn)?shù)的數(shù)學(xué)期望。
【解析】第一問總利用獨立事件的概率乘法公式得分為50分,10道題必須全做對.在其余的3道題中,有1道題答對的概率為,有1道題答對的概率為
,還有1道答對的概率為
,
所以得分為50分的概率為:
第二問中,依題意,該考生得分的范圍為{35,40,45,50}
得分為35分表示只做對了7道題,其余各題都做錯,
所以概率為
得分為40分的概率為:
同理求得,得分為45分的概率為:
得分為50分的概率為:
得到分布列和期望值。
解:(1)得分為50分,10道題必須全做對.在其余的3道題中,有1道題答對的概率為,有1道題答對的概率為
,還有1道答對的概率為
,
所以得分為50分的概率為: …………5分
(2)依題意,該考生得分的范圍為{35,40,45,50} …………6分
得分為35分表示只做對了7道題,其余各題都做錯,
所以概率為 …………7分
得分為40分的概率為: …………8分
同理求得,得分為45分的概率為:
…………9分
得分為50分的概率為:
…………10分
所以得分的分布列為
|
35 |
40 |
45 |
50 |
|
|
|
|
|
數(shù)學(xué)期望
已知點為圓
上的動點,且
不在
軸上,
軸,垂足為
,線段
中點
的軌跡為曲線
,過定點
任作一條與
軸不垂直的直線
,它與曲線
交于
、
兩點。
(I)求曲線的方程;
(II)試證明:在軸上存在定點
,使得
總能被
軸平分
【解析】第一問中設(shè)為曲線
上的任意一點,則點
在圓
上,
∴,曲線
的方程為
第二問中,設(shè)點的坐標(biāo)為
,直線
的方程為
, ………………3分
代入曲線的方程
,可得
∵,∴
確定結(jié)論直線與曲線
總有兩個公共點.
然后設(shè)點,
的坐標(biāo)分別
,
,則
,
要使被
軸平分,只要
得到。
(1)設(shè)為曲線
上的任意一點,則點
在圓
上,
∴,曲線
的方程為
. ………………2分
(2)設(shè)點的坐標(biāo)為
,直線
的方程為
, ………………3分
代入曲線的方程
,可得
,……5分
∵,∴
,
∴直線與曲線
總有兩個公共點.(也可根據(jù)點M在橢圓
的內(nèi)部得到此結(jié)論)
………………6分
設(shè)點,
的坐標(biāo)分別
,
,則
,
要使被
軸平分,只要
,
………………9分
即,
, ………………10分
也就是,
,
即,即只要
………………12分
當(dāng)時,(*)對任意的s都成立,從而
總能被
軸平分.
所以在x軸上存在定點,使得
總能被
軸平分
1. 由函數(shù)知,當(dāng)
時,
,且
,則它的反函數(shù)過點(3,4),故選A.
2.∵,∴
,則
,即
,
.
,選B.
3. 由平行四邊形法則,,
∴,
又,
∴,當(dāng)P為
中點時,取得最小值
.選B.
4. 設(shè)是橢圓的一個焦點,它是橢圓三個頂點
,
,
構(gòu)成的三角形的垂心(如圖).由
有
,即
,∴
,得
,解得
,選A.
5. 設(shè)正方形邊長為,
,則
,
.在
由正弦定理得
,又在
由余弦定理得
,于是
,
,選C.
6.
在底面
上的射影
知,
為斜線
在平面
上的射影,∵
,由三垂線定理得
,∵
,所以直線
與直線
重合,選A.
7. 過A作拋物線的準(zhǔn)線的垂線AA1交準(zhǔn)線A1,
過B作橢圓的右準(zhǔn)線的垂線
交右準(zhǔn)線于
則有:BN=e|BB1|=2-xB,AN=|AA1|=xA+1,周長
=|AN|+|AB|+|BN|=xA+1+(xB-xA)+(2-xB)=3+xB,
由可得兩曲線的交點x=,xB∈(,2),
∴3+xB∈(,4),即△ANB周長取值范圍是(,4),選B.
8. 先將3,5兩個奇數(shù)排好,有種排法,再將4,6兩個偶數(shù)插入3,5中,有
種排法,最后將1,2 當(dāng)成一個整體插入5個空位中,所以這樣的六位數(shù)的個數(shù)為
,選B.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com