題目列表(包括答案和解析)
的展開式中
的系數(shù)是
A. B.
C.3 D.4
的展開式中
的系數(shù)是
A.
B.
C.3 D.4
的展開式中
的系數(shù)是
A.
B.
C.3 D.4
的展開式中
的系數(shù)是
A. B.
C.3 D.4
的展開式中
的系數(shù)是
A.20 B. 40 C.80 D.160
一、
1.C 2.D 3.B 4.D 5.D 6.B 7.D 8.A 9.A 10.C
11.D 12.A
1~11.略
12.解:,
在是減函數(shù),由,得,,故選A.
二、
13.0.8 14. 15. 16.①③
三、
17.解:(1)
的單調(diào)遞增區(qū)間為
(2)
18.解:(1)當(dāng)時,有種坐法,
,即,
或舍去.
(2)的可能取值是0,2,3,4
又
的概率分布列為
0
2
3
4
則.
19.解:(1)時,,
又 ,
是一個以2為首項,8為公比的等比數(shù)列
(2)
最小正整數(shù).
20.解法一:
(1)設(shè)交于點
平面.
作于點,連接,則由三垂線定理知:是二面角的平面角.
由已知得,
,
∴二面角的大小的60°.
(2)當(dāng)是中點時,有平面.
證明:取的中點,連接、,則,
,故平面即平面.
又平面,
平面.
解法二:由已知條件,以為原點,以、、為軸、軸、軸建立空間直角坐標(biāo)系,則
(1),
,設(shè)平面的一個法向量為,
則取
設(shè)平面的一個法向量為,則。
二面角的大小為60°.
(2)令,則,
,
由已知,,要使平面,只需,即
則有,得當(dāng)是中點時,有平面.
21.解:(1)由條件得,所以橢圓方程是.
(2)易知直線斜率存在,令
由
由,
即得
,
即
得
將代入
有
22.解:(1)
在上為減函數(shù),時,恒成立,
即恒成立,設(shè),則
時,在(0,)上遞減速,
.
(2)若即有極大值又有極小值,則首先必需有兩個不同正要,,
即有兩個不同正根
令
∴當(dāng)時,有兩個不同正根
不妨設(shè),由知,
時,時,時,
∴當(dāng)時,既有極大值又有極小值.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com