題目列表(包括答案和解析)
函數(shù)在
上恒有
,則實數(shù)
的取值范圍是
A.(1,2) B.
C. D.
函數(shù)在
上恒有
,則實數(shù)
的取值范圍是
A.(1,2) B.
C. D.
1.A 2.C 3.B 4,C 5.B 6.B 7.C 8.B 9.C 10.B
11.B 12.D
1.,在復(fù)平面對應(yīng)的點在第一象限.
3.當(dāng)時,函數(shù)在上,恒成立即在上恒成立,可得
當(dāng)時,函數(shù)在上,恒成立
即在上恒成立
可得,對于任意恒成立
所以,綜上得.
4.解法一:聯(lián)立,得.
方程總有解,需恒成立
即恒成立,得恒成立
;又
的取值范圍為.
解法二:數(shù)形結(jié)合,因為直線恒過定點(0,1),欲直線與橢圓總有交點,當(dāng)且僅當(dāng)點(0,1)在橢圓上或橢圓內(nèi),即
又
的取值范圍為.
5.
6.(略)
7.展開式前二項的系數(shù)滿足可解得,或(舍去).從而可知有理項為.
8.,欲使為奇函數(shù),須使,觀察可知,、不符合要求,若,則,其在上是減函數(shù),故B正確
當(dāng)時,,其在上是增函數(shù),不符合要求.
9.等價于
畫圖可知,故.
10.如圖甲所示.設(shè),點到直線的距離為
則由拋物線定義得,由點在雙曲線上,及雙曲線第一定義得
,又由雙曲線第二定義得,解之得.
11.由巳知中獎20元的概率;中獎2元的概率,中獎5元的概率,由上面知娛樂中心收費為1560元.付出元,收入元,估計該中心收入480元.
12.設(shè)中點為,連.由已知得平面,作,交的延長線于,蓮.則為所求,設(shè),則,在
中可求出,則.
二、
13..提示:可以用換元法,原不等式為也可以用數(shù)形結(jié)合法.
令,在同一坐標(biāo)系內(nèi)分別畫出這兩個函數(shù)的圖象,由圖直觀得解集.
14.12.提示:經(jīng)判斷,為截面圓的直徑,再由巳知可求出球的半徑為.
15..提示:由于得
解得,又
所以,當(dāng)時,取得最小值.
16.①②④
三、
17.懈:
,由正弦定理得,
又,
,化簡得
為等邊三角形.
說明;本題是向量和三角相結(jié)合的題目,既考查了向量的基本知識,又考查了三角的有關(guān)知識,三角形的形狀既可由角確定。也可由邊確定,因此既可從角入手,把邊化為角;也可從邊入手,把角化為邊來判斷三角形的形狀.
18.解:(1)分別記“客人游覽甲景點”、“客人游覽乙景點”、 “客人游覽丙景點”為事件、、.由已知、、相互獨立,,客人游覽的景點數(shù)的可能取值為0,1,2.3,相應(yīng)地客人沒有游覽的景點的可能取值為3,2,1,0,的取值為1,3,且
的分布列為
1
3
0.76
0.24
.
(2)解法一:在上單凋遞增,要使在上單調(diào)遞增,
當(dāng)且僅當(dāng),即.從而.
解法二:當(dāng)時,在單調(diào)遞增當(dāng)時,在不單調(diào)遞增,.
19.解:(1)因
故是公比為的等比數(shù)列,且
故.
(2)由得
注意到,可得,即
記數(shù)列的前項和為,則
兩式相減得:
故
從而
.
20.解:(1)如圖所示,連接因為平面,平面平面,平面平面所以;又為的中點,故為的中點
底面
為與底面所成的角
在中,
所以與底面所成的角為45°.
(2)解琺一;如圖建立直角坐標(biāo)系
則,
設(shè)點的坐標(biāo)為
故
點的坐標(biāo)為
故.
解法二:平面
,又
平面
在正方形中,
.
21.解:(1)設(shè)點、的坐標(biāo)分別為、點的坐標(biāo)為
當(dāng)時,設(shè)直線的斜率為
直線過點
的方程為
又已知 ①
②
③
④
∴式①一式②得
⑤
③式+④式得
⑥
∴由式⑤、式⑥及
得點的坐標(biāo)滿足方程
⑦
當(dāng)時,不存在,此時平行于軸,因此的中點一定落在軸上,即的坐標(biāo)為,顯然點(,0)滿足方程⑦
綜上所述,點的坐標(biāo)滿足方程
設(shè)方程⑦所表示的曲線為
則由,
得
因為,又已知,
所以當(dāng)時.,曲線與橢圓有且只有一個交點,
當(dāng)時,,曲線與橢圓沒有交點,因為(0,0)在橢圓內(nèi),又在曲線上,所以曲線在橢圓內(nèi),故點的軌跡方程為
(2)由解得曲線與軸交于點(0,0),(0,)
由解得曲線與軸交于點(0,0).(,0)
當(dāng),即點為原點時,(,0)、(0,)與(0.0)重合,曲線與坐標(biāo)軸只有一個交點(0,0).
當(dāng),且,即點不在橢圓外且在除去原點的軸上時,曲線與坐標(biāo)軸有兩個交點(0,)與(0,0),同理,當(dāng)且時,曲線與坐標(biāo)軸有兩個交點(,0)、(0,0).
當(dāng),且時,即點不在橢圓外,且不在坐標(biāo)軸上時,曲線與坐標(biāo)軸有三個交點(,0)、(0,)與(0,0).
22.解:(1)由
故直線的斜率為1.切點為,即(1,0),故的方程為:,
∴直線與的圖象相切.等價于方程組,只有一解,
即方程有兩個相等實根.
.
(2),由
,,當(dāng)時,是增函數(shù)。即
的單調(diào)遞增區(qū)間為(,0).
(3)由(1)知,,令
由
令,則
當(dāng)變化時,的變化關(guān)系如下表:
()
ㄊ
0
極大植ln2
(,0)
ㄋ
0
0
極小植
(0,1)
ㄊ
1
0
極大值ln2
(1,)
ㄋ
據(jù)此可知,當(dāng)時,方程有三解
當(dāng),方程有四解
當(dāng)或時,方程有兩解
當(dāng)時,方程無解.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com