題目列表(包括答案和解析)
已知數(shù)列是各項均不為0的等差數(shù)列,公差為d,
為其前n項和,且滿足
,
.數(shù)列
滿足
,
,
為數(shù)列
的前n項和.
(1)求數(shù)列的通項公式
和數(shù)列
的前n項和
;
(2)若對任意的,不等式
恒成立,求實數(shù)
的取值范圍;
(3)是否存在正整數(shù),使得
成等比數(shù)列?若存在,求出所有
的值;若不存在,請說明理由.
【解析】第一問利用在中,令n=1,n=2,
得 即
解得,,
[
又時,
滿足
,
,
第二問,①當n為偶數(shù)時,要使不等式恒成立,即需不等式
恒成立.
,等號在n=2時取得.
此時
需滿足
.
②當n為奇數(shù)時,要使不等式恒成立,即需不等式
恒成立.
是隨n的增大而增大, n=1時
取得最小值-6.
此時
需滿足
.
第三問,
若成等比數(shù)列,則
,
即.
由,可得
,即
,
.
(1)(法一)在中,令n=1,n=2,
得 即
解得,,
[
又時,
滿足
,
,
.
(2)①當n為偶數(shù)時,要使不等式恒成立,即需不等式
恒成立.
,等號在n=2時取得.
此時
需滿足
.
②當n為奇數(shù)時,要使不等式恒成立,即需不等式
恒成立.
是隨n的增大而增大, n=1時
取得最小值-6.
此時
需滿足
.
綜合①、②可得的取值范圍是
.
(3),
若成等比數(shù)列,則
,
即.
由,可得
,即
,
.
又,且m>1,所以m=2,此時n=12.
因此,當且僅當m=2,
n=12時,數(shù)列中的
成等比數(shù)列
稱滿足以下兩個條件的有窮數(shù)列為
階“期待數(shù)列”:
①;②
.
(1)若等比數(shù)列為
階“期待數(shù)列”,求公比q及
的通項公式;
(2)若一個等差數(shù)列既是
階“期待數(shù)列”又是遞增數(shù)列,求該數(shù)列的通項公式;
(3)記n階“期待數(shù)列”的前k項和為
:
(i)求證:;
(ii)若存在使
,試問數(shù)列
能否為n階“期待數(shù)列”?若能,求出所有這樣的數(shù)列;若不能,請說明理由.
設滿足以下兩個條件的有窮數(shù)列為
階“期待數(shù)列”:
①;②
.
(1)若等比數(shù)列為
(
)階“期待數(shù)列”,求公比
;
(2)若一個等差數(shù)列既是
(
)階“期待數(shù)列”又是遞增數(shù)列,求該數(shù)列的通項公式;
(3)記階“期待數(shù)列”
的前
項和為
:
(ⅰ)求證:;
(ⅱ)若存在使
,試問數(shù)列
能否為
階“期待數(shù)列”?若能,求出所有這樣的數(shù)列;若不能,請說明理由.
設滿足以下兩個條件得有窮數(shù)列為
階“期待數(shù)列”:
①,②
.
(1)若等比數(shù)列為
階“期待數(shù)列”,求公比
;
(2)若一個等差數(shù)列既為
階“期待數(shù)列”又是遞增數(shù)列,求該數(shù)列的通項公式;
(3)記階“期待數(shù)列”
的前
項和為
.
()求證:
;
()若存在
,使
,試問數(shù)列
是否為
階“期待數(shù)列”?若能,求出所有這樣的數(shù)列;若不能,請說明理由.
稱滿足以下兩個條件的有窮數(shù)列為
階“期待數(shù)列”:
①;②
.
(1)若等比數(shù)列為
階“期待數(shù)列”,求公比q及
的通項公式;
(2)若一個等差數(shù)列既是
階“期待數(shù)列”又是遞增數(shù)列,求該數(shù)列的通項公式;
(3)記n階“期待數(shù)列”的前k項和為
:
(i)求證:;
(ii)若存在使
,試問數(shù)列
能否為n階“期待數(shù)列”?若能,求出所有這樣的數(shù)列;若不能,請說明理由.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com