8天堂资源在线,国产成人久久av免费高潮,国产精品亚洲综合色区韩国,国产欧美va天堂在线观看视频,xx色综合

7.設(shè)向量的值是 查看更多

 

題目列表(包括答案和解析)

設(shè)向量
a
=(cos55°,sin55°)
,
b
=(cos25°,sin25°)
t是實(shí)數(shù),|
a
-t
b
|的最小值為(  )
A、
2
2
B、
1
2
C、1
D、
2

查看答案和解析>>

設(shè)向量
a
,
b
的夾角為θ,且|
a
|=
1
2
,|
b
|=3
,m是向量
b
a
方向上的射影的數(shù)量,則函數(shù)y=|
a
|m
的最大值和最小值之和為( 。
A、
17
4
B、8
C、
65
8
D、
1
8

查看答案和解析>>

設(shè)向量
a
=(cos25°,sin25°)
b
=(sin20°,cos20°)
,若t是實(shí)數(shù),且
u
=
a
+t
b
,則|
u
|
的最小值為(  )
A、
2
B、1
C、
2
2
D、
1
2

查看答案和解析>>

設(shè)向量
a
=(a1,a2),
b
=(b1,b2)
,定義一種向量積:
a
?
b
=(a1,a2)?(b1b2)=(a1b1,a2b2)
.已知
m
=(
1
2
,3),
n
=(
π
6
,0)
,點(diǎn)P在y=sinx的圖象上運(yùn)動,點(diǎn)Q在y=f(x)的圖象上運(yùn)動,且滿足
OQ
=
m
?
OP
+
n
(其中O為坐標(biāo)原點(diǎn)),則y=f(x)的最大值及最小正周期分別是(  )
A、
1
2
,π
B、
1
2
,4π
C、3,π
D、3,4π

查看答案和解析>>

設(shè)向量
a
=(x,2),
b
=(x+n,2x-1) (n∈N+)
,函數(shù)y=
a
b
在[0,1]上的最小值與最大值的和為an,又?jǐn)?shù)列{bn}滿足:nb1+(n-1)b2+…+bn=(
9
10
)n-1+(
9
10
)n-2+…+(
9
10
)+1

(1)求證:an=n+1;
(2)求bn的表達(dá)式;
(3)cn=-an•bn,試問數(shù)列{cn}中,是否存在正整數(shù)k,使得對于任意的正整數(shù)n,都有cn≤ck成立?證明你的結(jié)論.

查看答案和解析>>

 

一、選擇題

1―12  CBDBA  ACCAD  BA

二、填空題

13.    14.   15.(理)   (文)16.②④

三、解答題

17.解(1)設(shè)向量的夾角

…………………………………………2分

當(dāng)

向量的夾角為;…………………………4分

當(dāng)

向量的夾角為;……………………6分

(2)|對任意的恒成立,

,

對任意的恒成立。

恒成立……………………8分

所以…………………………10分

解得:

故所求實(shí)數(shù)的取值范圍是………………12分

18.(理)解:(1)的取值為1,3。

…………………………1分

…………………………3分

的分布列為

1

3

P

 

…………………………5分

………………………………6分

(2)當(dāng)S8=2時,即前8分鐘出現(xiàn)“紅燈”5次和“綠燈”3次,有已知 若第一、三分鐘出現(xiàn)“紅燈”,則其余六分鐘可出現(xiàn)“紅燈”3次………………8分

若第一、二分鐘出現(xiàn)“紅燈”,第三分鐘出現(xiàn)“綠燈”,則其后五分鐘可出現(xiàn)“紅燈”3次…………………………10分

故此時的概率為……………………12分

(文)解:(1)若第一個路口為紅燈,則第二個路口為綠燈的概率為

;…………………………2分

若第一個路口為綠燈,則第二個路口為綠燈的概率為…………4分

∴經(jīng)過第二個路口時,遇到綠燈的概率是…………6分

(2)若第一個路口為紅燈,其它兩個路口為綠燈的概率為

;…………………………8分

若第二個路口為紅燈,其它兩個路口為綠燈的概率為:

………………………………10分

若第三個路口為紅燈,其它兩個路口為綠燈的概率為:

…………………………11分

∴經(jīng)過三個路口,出現(xiàn)一次紅燈,兩次綠燈的概率是………………12分

19.(理)解:(1)求滿足條件①的a的取值范圍,

函數(shù)的定義域?yàn)?sub>取任意實(shí)數(shù)時,

…………………………2分

解得:a<1…………………………3分

求滿足條件②的a的取值范圍

設(shè)……………………4分

可得,

說明:當(dāng)

又當(dāng)

∴對任意的實(shí)數(shù)x,恒有…………………………6分

要使得x取任意實(shí)數(shù)時,不等式恒成立,

須且只須…………………………7分

由①②可得,同時滿足條件(i)、(ii)的實(shí)數(shù)a的取值范圍為:

…………………………8分

(2)

……………………10分

∴不等式的解集是:

…………………………12分

(文)解:(1)…………4分

(2)解法一  ………………6分

因?yàn)?sub>,所以……………………00分

解得:………………12分

解法二:當(dāng)x=0時,恒成立;………………5分

當(dāng)x>0時,原式或化為,………………9分

因?yàn)?sub>時取等號)………………11分

        <nav id="lnpju"><strong id="lnpju"></strong></nav>

          20.解法一:(1)連結(jié)AC,交BD于0,

          則O為AC的中點(diǎn),連結(jié)EO。

          ∵PA//平面BDE,平面PAC平面BDE=OE,

          ∴PA//OE…………………………2分

          ∴點(diǎn)E是PC的中點(diǎn)!3分

          (2)∵PD⊥底面ABCD,且DC底面ABCD,

          ∴PD⊥DC,△PDC是等腰直角三角形,……………………4分

          而DE是斜邊PC的中線,

          ∴DE⊥PC,  ①

          又由PD⊥平面ABCD得,PD⊥BC!6分

          ∵底面ABCD是正方形,CD⊥BC,

          ∴BC⊥平面PDC,

          而DE平面PDC,

          ∴BC⊥DE   ② ……………………7分

          由①和②推得DE⊥平面PBC,而PB平面PBC

          ∴DE⊥PB,又DF⊥PB且DEDF=D,

          所以PB⊥平面EFD,…………………………8分

          (3)由(2)知,PB⊥EF,已知PB⊥DF,故∠EFD是二面角C―PB―D的平面角,

          ………………9分

          由(2)知,DF⊥EF,PD⊥DB。

          設(shè)正方形ABCD的邊長為a,則PD=DC=a,BD=

          ……………………10分

          在Rt△EFD中,

          所以,二面角C―PB―D的大小為……………………12分

           

          解法二:(1)同解法一……………………3分

          (2)如圖所示建立空間直角坐標(biāo)系,D為坐標(biāo)原點(diǎn),

          設(shè)DC=a,依題意得

          P(0,0,a),B(a,a,0),C(0,a,0   ),

          E(0, ),A(a,0,0),D(0,0,0),

          ………………4分

          …………………………6分

          由已知DF⊥PB,且DFDE=D,

          所以PB⊥平面EFD。………………………………8分

          (3)由(2)得

          設(shè)平面PBC的法向量為n=(x,y,z),

          m為平面PBD的法向量,由

          平面PBD

          又因?yàn)槎娼荂―PB―D為銳角,所以其大小為……………………12分

          21.解:設(shè)

          因?yàn)閮蓽?zhǔn)線與x軸的交點(diǎn)分別為

           ……………………1分

          由題意知

          ………………………………3分

          則點(diǎn)N的坐標(biāo)為N(),

          即N………………………………4分

          所以………………5分

          ………………………………6分

                 當(dāng)x≠0時,代入,=得:=……………………8分

                 所以,

                 即                                                               …………………10分

                 當(dāng)x=0時,點(diǎn)P的坐標(biāo)為P(0,),

                 點(diǎn)M的坐標(biāo)滿足條件:=

                 點(diǎn)M的坐標(biāo)滿足條件:=

                 顯然推出與已知雙曲線中≠0矛盾。

                 所以P點(diǎn)的軌跡方程為.(x≠0,y≠0)      ……………………12分

          22.解:

             (1)由………2分

                 所以

          即所求數(shù)列{an}的通項公式為………………4分

             (2)若n為奇數(shù),則…………5分

                 =……………………7分

                 =4-3                                                                             …………………9分

                 若n為偶數(shù),則………………10分

                 =            …………………12分

                 =4-4                                                                               …………………14分

           

           

            <tt id="lnpju"></tt>