題目列表(包括答案和解析)
設(shè)數(shù)列的前n項(xiàng)和為Sn,且
.
(1)求數(shù)列的通項(xiàng)公式;
(2)令,記數(shù)列
的前
項(xiàng)和為
.求證:
.
設(shè)數(shù)列的前n項(xiàng)和為Sn,且
.
(1)求數(shù)列的通項(xiàng)公式;
(2)令,記數(shù)列
的前
項(xiàng)和為
.求證:
.
數(shù)列的前n項(xiàng)和記為Sn,a1=t,點(diǎn)(Sn,an+1)在直線y=2x+1上,n∈N*.
(1)當(dāng)實(shí)數(shù)為何值時(shí),數(shù)列
是等比數(shù)列?
(2)在(1)的結(jié)論下,設(shè)是數(shù)列
的前
項(xiàng)和,求
的值.
一.選擇
1. 選B 滿足f[f(x)]=x有2個(gè) ①1→1,2→2 ②1→2,2→1
2. 選C 只需注意
3. 選C 當(dāng)
時(shí)
4. 選D 分組(1),(2,2),(3,3,3),(4,4,4,4)……
前13組共用去1+2+……+13=個(gè)數(shù),而第14組有14個(gè)數(shù),
故第100項(xiàng)是在第14組中.
5. 選D 由于0<a<b 有f(a)=f(b) 故0<a<, b>
即 f(a)=2-a2 , f(b)=b2-2
由2-a2= b2-2得到a2+b2=4且a≠b ∴0<ab<2
6.選B 由已知 ∴
∴
.
7.選D 由.
8.選C 設(shè)正方體的邊長(zhǎng)為a,當(dāng)截面為菱形,即過(guò)相對(duì)棱(如AA1及CC1)時(shí),
面積最小, 此時(shí)截面為邊長(zhǎng),兩對(duì)角線分別為
和
的菱形,
此時(shí),當(dāng)截面過(guò)兩相對(duì)棱(如BC及A1D1)時(shí)截面積最大,
此時(shí) ∴
|