8天堂资源在线,国产成人久久av免费高潮,国产精品亚洲综合色区韩国,国产欧美va天堂在线观看视频,xx色综合

的最小正周期,取最小值時x的集合,(3)若當(dāng)時.f(x)的反函數(shù)為.求的值. 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)數(shù)學(xué)公式的最小正周期為π,且在數(shù)學(xué)公式處取得最大值.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)在△ABC中,角A,B,C的對邊分別為a,b,c,若數(shù)學(xué)公式,且數(shù)學(xué)公式,求角B.

查看答案和解析>>

已知函數(shù)的最小正周期為4π.
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)在△ABC中,角A,B,C的對邊分別是a,b,c滿足(2a-c)cosB=bcosC,求函數(shù)f(A)的取值范圍.

查看答案和解析>>

已知函數(shù)的最小正周期為4π.
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)在△ABC中,角A,B,C的對邊分別是a,b,c滿足(2a-c)cosB=bcosC,求函數(shù)f(A)的取值范圍.

查看答案和解析>>

已知函數(shù)的最小正周期為4π.
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)在△ABC中,角A,B,C的對邊分別是a,b,c滿足(2a-c)cosB=bcosC,求函數(shù)f(A)的取值范圍.

查看答案和解析>>

已知函數(shù)的最小正周期為π,且點(diǎn)在函數(shù)的圖象上.
(1)確定函數(shù)f(x)的表達(dá)式,求f(x)取得最大值時x的取值集合;
(2)求函數(shù)f(x)的單調(diào)增區(qū)間.

查看答案和解析>>

 

一.選擇

1.  選B  滿足f[f(x)]=x有2個  ①1→1,2→2  ②1→2,2→1

2.  選C  只需注意

3.  選C    當(dāng)時 

4.  選D  分組(1),(2,2),(3,3,3),(4,4,4,4)……

          前13組共用去1+2+……+13=個數(shù),而第14組有14個數(shù),

故第100項(xiàng)是在第14組中.

5.  選D  由于0<a<b   有f(a)=f(b)  故0<a<, b>

即 f(a)=2-a2 , f(b)=b2-2

          由2-a2= b2-2得到a2+b2=4且a≠b  ∴0<ab<2

6.選B   由已知  ∴  ∴.

7.選D   由.

8.選C   設(shè)正方體的邊長為a,當(dāng)截面為菱形,即過相對棱(如AA1及CC1)時,

面積最小, 此時截面為邊長,兩對角線分別為的菱形,

此時,當(dāng)截面過兩相對棱(如BC及A1D1)時截面積最大,

此時  ∴

      1

      10.選D   按兩相對面是否同色分類 ①兩相對面不同色4

      ②兩相對面同色

      ∴共有4+=96

      11.選D   注意到    sinx 

                           sinx 

                       且當(dāng)x=0,,時,

      12.選A   任取, 則由得到

                

               

       

        故f(x)在R上是單調(diào)增函數(shù)

      二.填空

      13.16   設(shè)ξ表示這個班的數(shù)學(xué)成績,則ξ~N(80,102),設(shè)Z= ,則Z~N(0,1)

            P(80<ξ<90=P(0<Z<1=

            而48×0.3413=16.3824   故應(yīng)為16人

      14.129 令x=1  及  而a0=-1  ∴

      15.①②④⑤   對于③當(dāng)x=時就不能取到最大值

      16.     3人傳球基本事件總數(shù)為25=32,經(jīng)過5次傳球,球恰好回到甲手中有三類

                ①甲□甲□□      共2×2=4種

      ②甲□□甲□甲    共2×2=4種

      ③甲□□□□甲    共2種

           ∴概率為

      三.解答題

      17.解:……4分

       (1)T=                                           …………………………6分

       (2)當(dāng)時f(x)取最小值-2         ……………………………9分

       (3)令  ………………12分

      18.解:(1)

      正面向上次數(shù)m

      3

      2

      1

              …………3分

              概率P(m)

               

              正面向上次數(shù)n

              2

              1

              …………6分

              概率P(n)

               

                (2)若m>n,則有三種情形          ………………………………………………7分

                     m=3時,n=2,1,0  ,          ………………………8分

                     m=2時,n=1,0  ,          ……………………………9分

                     m=1時,n=0  ,              ……………………………10分

               ∴甲獲勝概率P==     ………………………………12分

               

              19.(1)由  ∴   …………3分

                 ∵f(x)的定義域?yàn)閤≥1  ∴≥1    ……………4分

              ∴當(dāng)a>1時,≥0     ∴f(x) ≥0

              當(dāng)0<a<1時,≤0   ∴f(x)≤0

              ∴當(dāng)a>1,                   …………………………5分

              當(dāng)0<a<1時,          ………………………………6分

              (2)由(1)知

               ∴

                               …………………………7分

              設(shè)函數(shù)      在<0,>0

              ∴在  為增函數(shù)                ……………………………8分

              ∴當(dāng)1<a<2時,          ………………………………………10分

                  =

                  =<2n        ……………………12分

              20.(1)證:延長B1E交BC于F,∵△B1EC1∽△FEB,BE=EC1,∴BF=

              從而F為BC的中點(diǎn),           …………………………………………………………3分

              ∵G是△ABC的重心,∴A、G、F三點(diǎn)共線

                  ∴∥AB1         ……………………………………………5分

              又GE側(cè)面AA1B1B,∴GE∥側(cè)面AA1B1B        ……………………………………6分

               

              (2)解:過A1作A1O⊥AB交于O,由已知可知∠A1AO=60°

              ∴O為AB的中點(diǎn),         ………………………………………………………………7分

              連OC,作坐標(biāo)系O-xyz如圖易知平面ABC的法向量     ………………8分

              A(0,?1,0),F(xiàn)(),  B1(0,2,)

              ,          ………………………………9分

              設(shè)平面B1GE的法向量為

              平面B1GE也就是平面AB1F

              可取   ………………………………………………10分

              ∴二面角(銳角)的余弦cosθ=

              ∴二面角(銳角)為        ………………………………………………12分

              21.(1)由于,  O為原點(diǎn),∴…………1分

              ∴L : x =?2  由題意  動點(diǎn)P到定點(diǎn)B的距離和到定直線的距離相等,

              故點(diǎn)P的 軌跡是以B為焦點(diǎn)L為準(zhǔn)線的拋物線    ……………………………………2分

              ∴動點(diǎn)P的軌跡為y2=8x                ………………………………………………4分

              (2)由  消去y 得到      ………………6分

              設(shè)M(x1 , y1)  N(x2 , y2),則根據(jù)韋達(dá)定理得

              其中k>0                                               ………………………7分

                   ………………8分

                

              ≥17   ∴0<k≤1   ∴0<≤1       ………………………………9分

              ∴直線m的傾斜角范圍是(0,       ……………………………………………10分

              ②由于  ∴Q是線段MN的中點(diǎn)      …………………………………11分

              令Q(x0, y0)  則

                從而

                             …………………………………………12分

                即

                由于k>0

                         ……………………………………………………………14分

              22.(1)兩邊取自然對數(shù) blna>alnb 即

              ∴原不等式等價于    設(shè)(x>e)

                x>e時,<0  ∴在(e , +∞)上為減函數(shù),

              由e<a<b   ∴f(a)>f(b)   ∴

              得證                   ……………………………………………………6分

              (2)由(1)可知,在(0,1)上為增函數(shù)

              由f(a)=f(b)   ∴a=b               ……………………………………………………8分

              (3)由(1)知,當(dāng)x∈(0,e)時,>0,當(dāng)x∈(e,+∞)時,<0

              >0           …………………………10分

              其中   ∴a=4 , b=2  或a=2 , b=4          ……………………………12分

                <cite id="wkjlj"><track id="wkjlj"></track></cite>