題目列表(包括答案和解析)
19C.解:由得
,所以
,所以
,因?yàn)閒(x)=x,所以
解得x=-1或-2或2,所以選C
調(diào)查某醫(yī)院某段時間內(nèi)嬰兒出生時間與性別的關(guān)系,得到以下數(shù)據(jù)。
晚上 | 白天 | 合計 | |
男嬰 | 24 | 31 | 55 |
女嬰 | 8 | 26 | 34 |
合計 | 32 | 57 | 89 |
試問有多大把握認(rèn)為嬰兒的性別與出生時間有關(guān)系?
已知數(shù)列的前
項和為
,且
(
N*),其中
.
(Ⅰ) 求的通項公式;
(Ⅱ) 設(shè) (
N*).
①證明: ;
② 求證:.
【解析】本試題主要考查了數(shù)列的通項公式的求解和運(yùn)用。運(yùn)用關(guān)系式,表示通項公式,然后得到第一問,第二問中利用放縮法得到
,②由于
,
所以利用放縮法,從此得到結(jié)論。
解:(Ⅰ)當(dāng)時,由
得
. ……2分
若存在由
得
,
從而有,與
矛盾,所以
.
從而由得
得
. ……6分
(Ⅱ)①證明:
證法一:∵∴
∴
∴.…………10分
證法二:,下同證法一.
……10分
證法三:(利用對偶式)設(shè),
,
則.又
,也即
,所以
,也即
,又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921381634452104/SYS201206192140215789581034_ST.files/image037.png">,所以
.即
………10分
證法四:(數(shù)學(xué)歸納法)①當(dāng)時,
,命題成立;
②假設(shè)時,命題成立,即
,
則當(dāng)時,
即
即
故當(dāng)時,命題成立.
綜上可知,對一切非零自然數(shù),不等式②成立. ………………10分
②由于,
所以,
從而.
也即
⊙O1和⊙O2的極坐標(biāo)方程分別為,
.
⑴把⊙O1和⊙O2的極坐標(biāo)方程化為直角坐標(biāo)方程;
⑵求經(jīng)過⊙O1,⊙O2交點(diǎn)的直線的直角坐標(biāo)方程.
【解析】本試題主要是考查了極坐標(biāo)的返程和直角坐標(biāo)方程的轉(zhuǎn)化和簡單的圓冤啊位置關(guān)系的運(yùn)用
(1)中,借助于公式,
,將極坐標(biāo)方程化為普通方程即可。
(2)中,根據(jù)上一問中的圓的方程,然后作差得到交線所在的直線的普通方程。
解:以極點(diǎn)為原點(diǎn),極軸為x軸正半軸,建立平面直角坐標(biāo)系,兩坐標(biāo)系中取相同的長度單位.
(I),
,由
得
.所以
.
即為⊙O1的直角坐標(biāo)方程.
同理為⊙O2的直角坐標(biāo)方程.
(II)解法一:由解得
,
即⊙O1,⊙O2交于點(diǎn)(0,0)和(2,-2).過交點(diǎn)的直線的直角坐標(biāo)方程為y=-x.
解法二: 由,兩式相減得-4x-4y=0,即過交點(diǎn)的直線的直角坐標(biāo)方程為y=-x
已知向量,且
,A為銳角,求:
(1)角A的大;
(2)求函數(shù)的單調(diào)遞增區(qū)間和值域.
【解析】第一問中利用,解得
又A為銳角
第二問中,
由 解得單調(diào)遞增區(qū)間為
解:(1) ……………………3分
又A為銳角
……………………5分
(2)
……………………8分
由 解得單調(diào)遞增區(qū)間為
……………………10分
(天津卷理12)一個正方體的各定點(diǎn)均在同一球的球面上,若該球的體積為,則該正方體的表面積為 .
解析:由得
,所以
,表面積為
.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com