題目列表(包括答案和解析)
(9分)已知動直線與拋物線
相交于A點,動點B的坐標是
(Ⅰ)求線段AB的中點M的軌跡的方程;
(Ⅱ)若過點N(1,0)的直線交軌跡
于
、
兩點,點
是坐標原點,若
面積為4,求直線
的傾斜角
.
已知拋物線,直線
交拋物線于
兩點,且
.
(1)求拋物線的方程;
(2)若點是拋物線
上的動點,過
點的拋物線的切線與直線
交于點
,問在
軸上是否存在定點
,使得
?若存在,求出該定點,并求出
的面積的最小值;若不存在,請說明理由.
已知拋物線,直線
交拋物線于
兩點,且
.
(1)求拋物線的方程;
(2)若點是拋物線
上的動點,過
點的拋物線的切線與直線
交于點
,問在
軸上是否存在定點
,使得
?若存在,求出該定點,并求出
的面積的最小值;若不存在,請說明理由.
)已知,A是拋物線y2=2x上的一動點,過A作圓(x-1)2+y2=1的兩條切線分別切圓于EF兩點,交拋物線于M.N兩點,交y軸于 B.C兩點
(1)當A點坐標為(8,4)時,求直線EF的方程;
(2)當A點坐標為(2,2)時,求直線MN的方程;
(3)當A點的橫坐標大于2時,求△ABC面積的最小值。
天津精通高考復(fù)讀學(xué)校數(shù)學(xué)教研組組長 么世濤
一、選擇題 :1-4, BBBB ;5-8,DABD。
提示:1.
2.
3.用代替
得
4.
5.,
或
6.
7.略
8.
二、填空題:9.60; 10. 15:10:20 ; 11.; 12.
;
13.0.74 ; 14. ①、;②、圓;③.
提示:
9.
10.,
,
11.,
12.,
,
,
,
13.
14.略
三、解答題
15. 解:(1).
(2)設(shè)抽取件產(chǎn)品作檢驗,則
,
,得:
,即
故至少應(yīng)抽取8件產(chǎn)品才能滿足題意.
16. 解:由題意得,
,原式可化為
,
而
,
故原式=.
17. 解:(1)顯然,連接
,∵
,
,
∴.由已知
,∴
,
.
∵∽
,
,
∴ 即
.
∴.
(2)
當且僅當時,等號成立.此時
,即
為
的中點.于是由
,知平面
,
是其交線,則過
作
。
∴就是
與平面
所成的角.由已知得
,
,
∴,
,
.
(3) 設(shè)三棱錐的內(nèi)切球半徑為
,則
∵,
,
,
,
,
∴.
18. 解: (1) ,
(2) ∵ ,
∴當時,
∴當時,
,
∵,
,
,
.
∴ 的最大值為
或
中的最大者.
∵
∴ 當時,
有最大值為
.
19.(1)解:∵函數(shù)的圖象過原點,
∴即
,
∴.
又函數(shù)的圖象關(guān)于點
成中心對稱,
∴,
.
(2)解:由題意有 即
,
即,即
.
∴數(shù)列{}是以1為首項,1為公差的等差數(shù)列.
∴,即
. ∴
.
∴ ,
,
,
.
(3)證明:當時,
故
20. (1)解:∵,又
,
∴.
又∵
,且
∴ .
(2)解:由,
,
猜想
(3)證明:用數(shù)學(xué)歸納法證明:
①當時,
,猜想正確;
②假設(shè)時,猜想正確,即
1°若為正奇數(shù),則
為正偶數(shù),
為正整數(shù),
2°若為正偶數(shù),則
為正整數(shù),
,又
,且
所以
即當時,猜想也正確
由①,②可知,成立.
(二)
一、1-4,AABB,5-8,CDCB;
提示: 1. 即
2. 即
3. 即
,也就是
,
4.先確定是哪兩個人的編號與座位號一致,有種情況,如編號為1的人坐1號座位,且編號為2的人坐2號座位有以下情形:
|