題目列表(包括答案和解析)
OA |
OB |
a |
OM |
OA |
OB |
已知橢圓的中心為坐標(biāo)原點(diǎn),焦點(diǎn)在
軸上,斜率為
且過(guò)橢圓右焦點(diǎn)
的直線交橢圓于
兩點(diǎn),
與
共線.設(shè)
為橢圓上任意一點(diǎn),且
,證明
為定值.
已知橢圓的中心為坐標(biāo)原點(diǎn)O,焦點(diǎn)在軸上,斜率為1且過(guò)橢圓右焦點(diǎn)F的直線交橢圓于A、B兩點(diǎn),
與向量
共線
(Ⅰ)求橢圓的離心率;
(Ⅱ)設(shè)M為橢圓上任意一點(diǎn),且,證明
為定值
已知橢圓的中心為坐標(biāo)原點(diǎn)O,焦點(diǎn)在x軸上,斜率為1且過(guò)橢圓右焦點(diǎn)F的直線交橢圓于A、B兩點(diǎn),與
=(3,-1)共線.
(1)求橢圓的離心率;
(2)設(shè)M為橢圓上任意一點(diǎn),且(
),證明
為定值.
已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在
軸上,離心率為
,且過(guò)雙曲線
的頂點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)命題:“設(shè)、
是雙曲線
上關(guān)于它的中心對(duì)稱的任意兩點(diǎn),
為該雙曲線上的動(dòng)點(diǎn),若直線
、
均存在斜率,則它們的斜率之積為定值”.試類比上述命題,寫出一個(gè)關(guān)于橢圓
的類似的正確命題,并加以證明和求出此定值;
(3)試推廣(Ⅱ)中的命題,寫出關(guān)于方程(
,
不同時(shí)為負(fù)數(shù))的曲線的統(tǒng)一的一般性命題(不必證明).
天津精通高考復(fù)讀學(xué)校數(shù)學(xué)教研組組長(zhǎng) 么世濤
一、選擇題 :1-4, BBBB ;5-8,DABD。
提示:1.
2.
3.用代替
得
4.
5.,
或
6.
7.略
8.
二、填空題:9.60; 10. 15:10:20 ; 11.; 12.
;
13.0.74 ; 14. ①、;②、圓;③.
提示:
9.
10.,
,
11.,
12.,
,
,
,
13.
14.略
三、解答題
15. 解:(1).
(2)設(shè)抽取件產(chǎn)品作檢驗(yàn),則
,
,得:
,即
故至少應(yīng)抽取8件產(chǎn)品才能滿足題意.
16. 解:由題意得,
,原式可化為
,
而
,
故原式=.
17. 解:(1)顯然,連接
,∵
,
,
∴.由已知
,∴
,
.
∵∽
,
,
∴ 即
.
∴.
(2)
當(dāng)且僅當(dāng)時(shí),等號(hào)成立.此時(shí)
,即
為
的中點(diǎn).于是由
,知平面
,
是其交線,則過(guò)
作
。
∴就是
與平面
所成的角.由已知得
,
,
∴,
,
.
(3) 設(shè)三棱錐的內(nèi)切球半徑為
,則
∵,
,
,
,
,
∴.
18. 解: (1) ,
(2) ∵ ,
∴當(dāng)時(shí),
∴當(dāng)時(shí),
,
∵,
,
,
.
∴ 的最大值為
或
中的最大者.
∵
∴ 當(dāng)時(shí),
有最大值為
.
19.(1)解:∵函數(shù)的圖象過(guò)原點(diǎn),
∴即
,
∴.
又函數(shù)的圖象關(guān)于點(diǎn)
成中心對(duì)稱,
∴,
.
(2)解:由題意有 即
,
即,即
.
∴數(shù)列{}是以1為首項(xiàng),1為公差的等差數(shù)列.
∴,即
. ∴
.
∴ ,
,
,
.
(3)證明:當(dāng)時(shí),
故
20. (1)解:∵,又
,
∴.
又∵
,且
∴ .
(2)解:由,
,
猜想
(3)證明:用數(shù)學(xué)歸納法證明:
①當(dāng)時(shí),
,猜想正確;
②假設(shè)時(shí),猜想正確,即
1°若為正奇數(shù),則
為正偶數(shù),
為正整數(shù),
2°若為正偶數(shù),則
為正整數(shù),
,又
,且
所以
即當(dāng)時(shí),猜想也正確
由①,②可知,成立.
(二)
一、1-4,AABB,5-8,CDCB;
提示: 1. 即
2. 即
3. 即
,也就是
,
4.先確定是哪兩個(gè)人的編號(hào)與座位號(hào)一致,有種情況,如編號(hào)為1的人坐1號(hào)座位,且編號(hào)為2的人坐2號(hào)座位有以下情形:
|