題目列表(包括答案和解析)
已知數(shù)列滿足:
,
(Ⅰ)計算的值;
(Ⅱ)由(Ⅰ)的結(jié)果猜想的通項(xiàng)公式,并用數(shù)學(xué)歸納法證明你的結(jié)論.
【解析】本試題主要考查了數(shù)列的通項(xiàng)公式的求解和猜想和數(shù)學(xué)歸納法的證明。
已知遞增等差數(shù)列滿足:
,且
成等比數(shù)列.
(1)求數(shù)列的通項(xiàng)公式
;
(2)若不等式對任意
恒成立,試猜想出實(shí)數(shù)
的最小值,并證明.
【解析】本試題主要考查了數(shù)列的通項(xiàng)公式的運(yùn)用以及數(shù)列求和的運(yùn)用。第一問中,利用設(shè)數(shù)列公差為
,
由題意可知,即
,解得d,得到通項(xiàng)公式,第二問中,不等式等價于
,利用當(dāng)
時,
;當(dāng)
時,
;而
,所以猜想,
的最小值為
然后加以證明即可。
解:(1)設(shè)數(shù)列公差為
,由題意可知
,即
,
解得或
(舍去). …………3分
所以,. …………6分
(2)不等式等價于,
當(dāng)時,
;當(dāng)
時,
;
而,所以猜想,
的最小值為
. …………8分
下證不等式對任意
恒成立.
方法一:數(shù)學(xué)歸納法.
當(dāng)時,
,成立.
假設(shè)當(dāng)時,不等式
成立,
當(dāng)時,
,
…………10分
只要證 ,只要證
,
只要證 ,只要證
,
只要證 ,顯然成立.所以,對任意
,不等式
恒成立.…14分
方法二:單調(diào)性證明.
要證
只要證 ,
設(shè)數(shù)列的通項(xiàng)公式
, …………10分
, …………12分
所以對,都有
,可知數(shù)列
為單調(diào)遞減數(shù)列.
而,所以
恒成立,
故的最小值為
.
天津精通高考復(fù)讀學(xué)校數(shù)學(xué)教研組組長 么世濤
一、選擇題 :1-4, BBBB ;5-8,DABD。
提示:1.
2.
3.用代替
得
4.
5.,
或
6.
7.略
8.
二、填空題:9.60; 10. 15:10:20 ; 11.; 12.
;
13.0.74 ; 14. ①、;②、圓;③.
提示:
9.
10.,
,
11.,
12.,
,
,
,
13.
14.略
三、解答題
15. 解:(1).
(2)設(shè)抽取件產(chǎn)品作檢驗(yàn),則
,
,得:
,即
故至少應(yīng)抽取8件產(chǎn)品才能滿足題意.
16. 解:由題意得,
,原式可化為
,
而
,
故原式=.
17. 解:(1)顯然,連接
,∵
,
,
∴.由已知
,∴
,
.
∵∽
,
,
∴ 即
.
∴.
(2)
當(dāng)且僅當(dāng)時,等號成立.此時
,即
為
的中點(diǎn).于是由
,知平面
,
是其交線,則過
作
。
∴就是
與平面
所成的角.由已知得
,
,
∴,
,
.
(3) 設(shè)三棱錐的內(nèi)切球半徑為
,則
∵,
,
,
,
,
∴.
18. 解: (1) ,
(2) ∵ ,
∴當(dāng)時,
∴當(dāng)時,
,
∵,
,
,
.
∴ 的最大值為
或
中的最大者.
∵
∴ 當(dāng)時,
有最大值為
.
19.(1)解:∵函數(shù)的圖象過原點(diǎn),
∴即
,
∴.
又函數(shù)的圖象關(guān)于點(diǎn)
成中心對稱,
∴,
.
(2)解:由題意有 即
,
即,即
.
∴數(shù)列{}是以1為首項(xiàng),1為公差的等差數(shù)列.
∴,即
. ∴
.
∴ ,
,
,
.
(3)證明:當(dāng)時,
故
20. (1)解:∵,又
,
∴.
又∵
,且
∴ .
(2)解:由,
,
猜想
(3)證明:用數(shù)學(xué)歸納法證明:
①當(dāng)時,
,猜想正確;
②假設(shè)時,猜想正確,即
1°若為正奇數(shù),則
為正偶數(shù),
為正整數(shù),
2°若為正偶數(shù),則
為正整數(shù),
,又
,且
所以
即當(dāng)時,猜想也正確
由①,②可知,成立.
(二)
一、1-4,AABB,5-8,CDCB;
提示: 1. 即
2. 即
3. 即
,也就是
,
4.先確定是哪兩個人的編號與座位號一致,有種情況,如編號為1的人坐1號座位,且編號為2的人坐2號座位有以下情形:
|