題目列表(包括答案和解析)
(本題滿分15分)已知橢圓:
的右頂點(diǎn)為
,過
的焦點(diǎn)且垂直長軸的弦長為
.
(I)求橢圓的方程;
(II)設(shè)點(diǎn)在拋物線
:
上,
在點(diǎn)
處的切線與
交于點(diǎn)
.當(dāng)線段
的中點(diǎn)與
的中點(diǎn)的橫坐標(biāo)相等時,求
的最小值.
(本題滿分15分)已知m是非零實(shí)數(shù),拋物線(p>0)
的焦點(diǎn)F在直線上。
(I)若m=2,求拋物線C的方程
(II)設(shè)直線與拋物線C交于A、B,△A
,△
的重心分別為G,H
求證:對任意非零實(shí)數(shù)m,拋物線C的準(zhǔn)線與x軸的焦點(diǎn)在以線段GH為直徑的圓外。
(本題滿分15分)已知m是非零實(shí)數(shù),拋物線(p>0)
的焦點(diǎn)F在直線上。
(I)若m=2,求拋物線C的方程
(II)設(shè)直線與拋物線C交于A、B,△A
,△
的重心分別為G,H
求證:對任意非零實(shí)數(shù)m,拋物線C的準(zhǔn)線與x軸的焦點(diǎn)在以線段GH為直徑的圓外。
(本題滿分15分)如圖,已知直線與拋物線
和圓
都相切,
是
的焦點(diǎn).
(1)求與
的值;(2)設(shè)
是
上的一動點(diǎn),以
為切點(diǎn)作拋物線
的切線
,直線
交
軸于點(diǎn)
,以
為鄰邊作平行四邊形
,證明:點(diǎn)
在一條定直線上;
(3)在(2)的條件下,記點(diǎn)所在的定直線為
,直線
與
軸交點(diǎn)為
,連接
交拋物線
于
兩點(diǎn),求
的面積
的取值范圍.
(本題滿分15分)如圖,已知直線與拋物線
和圓
都相切,F是C1的焦點(diǎn).
(1)求m與a的值;
(2)設(shè)A是C1上的一動點(diǎn),以A為切點(diǎn)作拋物線C1的切線l,直線l交y軸于點(diǎn)B,以FA、FB為鄰邊作平行四邊形FAMB,證明:點(diǎn)M在一條定直線上;
(3)在(2)的條件下,記點(diǎn)M點(diǎn)所在的定直線為l2,直線l2與y軸交點(diǎn)為N,連接MF交拋物線C1于P、Q兩點(diǎn),求△NPQ的面積S的取值范圍.
11.70 12. 2 13. 14. 【-1,1】 15.(-1,1) 16.
17.
18、解: (1)由函數(shù)的圖像與x軸的任意兩個相鄰交點(diǎn)間的距離為
得函數(shù)周期為
,
直線
是函數(shù)
圖像的一條對稱軸,
,
或
,
,
,
.
.
(2)
,
即函數(shù)的單調(diào)遞增區(qū)間為
. ,
19、解:(1)設(shè)公比為q,由題知:2()=
+
∴,即
∴q=2,即
(2),所以
①
②
①-②:
∴
20、解:(Ⅰ) 由題知:
,
又∵平面平面
且交線為
∴
∴
又∵,且
∴
(Ⅱ)在平面ABCE內(nèi)作.
∵平面平面
且交線為
∴ ∴
就是
與平面
所成角
由題易求CF=1,DF=5,則
21、解:(1)f(x)=ax34ax2+4ax
f/(x)=3ax28ax+
2)(x
2)=0
x=
或2
∵f(x)有極大值32,而f(2)=0 ∴f()=
,a=1
(2)f/(x)=a(3x2)(x
2)
當(dāng)a>0時,f(x)=[ 2,
]上遞增在[
]上遞減,
,
∴0<a<27
當(dāng)a<0時,f(x)在[2,
]上遞減,在[
]上遞增,f(
2)=
,即
∴ 綜上
22、解(1)設(shè)過拋物線的焦點(diǎn)
的直線方程為
或
(斜率
不存在),則
得
,
當(dāng)(斜率
不存在)時,則
又
,
所求拋物線方程為
(2)設(shè)
由已知直線的斜率分別記為:
,得
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com