8天堂资源在线,国产成人久久av免费高潮,国产精品亚洲综合色区韩国,国产欧美va天堂在线观看视频,xx色综合

A. 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)A.(選修4-4坐標系與參數(shù)方程)已知點A是曲線ρ=2sinθ上任意一點,則點A到直線ρsin(θ+
π3
)=4
的距離的最小值是
 

B.(選修4-5不等式選講)不等式|x-log2x|<x+|log2x|的解集是
 

C.(選修4-1幾何證明選講)如圖所示,AC和AB分別是圓O的切線,且OC=3,AB=4,延長AO到D點,則△ABD的面積是
 

查看答案和解析>>

精英家教網(wǎng)A.(不等式選做題)若關(guān)于x的不等式|x+3|-|x+2|≥log2a有解,則實數(shù)a的取值范圍是:
 

B.(幾何證明選做題)如圖,四邊形ABCD是圓O的內(nèi)接四邊形,延長AB和DC相交于點P.若
PB
PA
=
1
2
,
PC
PD
=
1
3
,則
BC
AD
的值為
 

C.(坐標系與參數(shù)方程選做題)設曲線C的參數(shù)方程為
x=3+2
2
cosθ
y=-1+2
2
sinθ
(θ為參數(shù)),以原點為極點,x軸正半軸為極軸建立極坐標系,直線l的極坐標方程為ρ=
2
cosθ-sinθ
,則曲線C上到直線l距離為
2
的點的個數(shù)為:
 

查看答案和解析>>

精英家教網(wǎng)A.(不等式選做題)
函數(shù)f(x)=x2-x-a2+a+1對于任一實數(shù)x,均有f(x)≥0.則實數(shù)a滿足的條件是
 

B.(幾何證明選做題)
如圖,圓O是△ABC的外接圓,過點C的切線交AB的延長線于點D,CD=2
3
,AB=BC=4,則AC的長為
 

C.(坐標系與參數(shù)方程選做題)
在極坐標系中,曲線ρ=4cos(θ-
π
3
)
上任意兩點間的距離的最大值為
 

查看答案和解析>>

精英家教網(wǎng)A.不等式
x-2
x2+3x+2
>0
的解集是
 

B.如圖,AB是⊙O的直徑,P是AB延長線上的一點,過P作⊙O的切線,切點為CPC=2
3
,若∠CAP=30°,則⊙O的直徑AB=
 

C.(極坐標系與參數(shù)方程選做題)若圓C:
x=1+
2
cosθ
y=2+
2
sinθ
(θ為參數(shù))
與直線x-y+m=0相切,則m=
 

查看答案和解析>>

精英家教網(wǎng)A.(不等式選做題)不等式|3x-6|-|x-4|>2x的解集為
 


B.(幾何證明選做題)如圖,直線PC與圓O相切于點C,割線PAB經(jīng)過圓心O,
弦CD⊥AB于點E,PC=4,PB=8,則CE=
 

C.(坐標系與參數(shù)方程選做題)在極坐標系中,圓ρ=4cosθ的圓心到直線ρsin(θ+
π
4
)=2
2
的距離為
 

查看答案和解析>>

一、選擇題:

      <style id="zthpx"></style>
    • <sub id="zthpx"></sub>

          2,4,6

          二、填空題:

          13、  14、 15、75  16、  17、②  18、④   19、

          20、21、22、23、24、25、

          26、

          三、解答題:

          27解:(1)當時,

          ,∴上是減函數(shù).

          (2)∵不等式恒成立,即不等式恒成立,

          不等式恒成立. 當時,  不恒成立;

          時,不等式恒成立,即,∴.

          時,不等式不恒成立. 綜上,的取值范圍是.

          28解:(1)

          (2),20 

          20與=3解得b=4,c=5或b=5,c= 4

          (3)設D到三邊的距離分別為x、y、z,則 

           又x、y滿足

          畫出不等式表示的平面區(qū)域得: 

          29(1)證明:連結(jié),則//,  

          是正方形,∴.∵,∴

          ,∴.  

          ,∴,

          (2)證明:作的中點F,連結(jié)

          的中點,∴,

          ∴四邊形是平行四邊形,∴

          的中點,∴,

          ,∴

          ∴四邊形是平行四邊形,//

          ,,

          ∴平面

          平面,∴

          (3)

          . 

          30解: (1)由,

          ,

          則由,解得F(3,0) 設橢圓的方程為,

          ,解得 所以橢圓的方程為  

          (2)因為點在橢圓上運動,所以,   從而圓心到直線的距離. 所以直線與圓恒相交

          又直線被圓截得的弦長為

          由于,所以,則,

          即直線被圓截得的弦長的取值范圍是

          31解:(1)g(t) 的值域為[0,]

          (2)

          (3)當時,+=<2;

          時,.

          所以若按給定的函數(shù)模型預測,該市目前的大氣環(huán)境綜合指數(shù)不會超標。

          32解:(1)

           當時,時,,

           

           的極小值是

          (2),要使直線對任意的都不是曲線的切線,當且僅當時成立,

          (3)因最大值

           ①當時,

           

            ②當時,(?)當

           

          (?)當時,單調(diào)遞增;

          1°當時,

          ;

          2°當

          (?)當

          (?)當

          綜上