8天堂资源在线,国产成人久久av免费高潮,国产精品亚洲综合色区韩国,国产欧美va天堂在线观看视频,xx色综合

已知函數(shù).若存在.則稱是函數(shù)的一個不動點.設 查看更多

 

題目列表(包括答案和解析)

已知函數(shù),若存在,則

稱是函數(shù)的一個不動點,設

   (Ⅰ)求函數(shù)的不動點;

   (Ⅱ)對(Ⅰ)中的二個不動點、(假設),求使

恒成立的常數(shù)的值;

查看答案和解析>>

已知函數(shù),若存在,則
稱是函數(shù)的一個不動點,設
(Ⅰ)求函數(shù)的不動點;
(Ⅱ)對(Ⅰ)中的二個不動點、(假設),求使
恒成立的常數(shù)的值;

查看答案和解析>>

已知函數(shù),若存在使得恒成立,則稱  是

一個“下界函數(shù)” .

(I)如果函數(shù)(t為實數(shù))為的一個“下界函數(shù)”,

求t的取值范圍;

(II)設函數(shù),試問函數(shù)是否存在零點,若存在,求出零點個數(shù);

若不存在,請說明理由.

 

查看答案和解析>>

已知函數(shù),若存在使得恒成立,則稱  是
一個“下界函數(shù)” .
(I)如果函數(shù)(t為實數(shù))為的一個“下界函數(shù)”,
求t的取值范圍;
(II)設函數(shù),試問函數(shù)是否存在零點,若存在,求出零點個數(shù);
若不存在,請說明理由.

查看答案和解析>>

 

        已知函數(shù),若存在實數(shù)則稱是函數(shù)的一個不動點.

   (I)證明:函數(shù)有兩個不動點;

   (II)已知a、b是的兩個不動點,且.當時,比較

        的大。

   (III)在數(shù)列中,,等式對任何正整數(shù)n都成立,求數(shù)列的通項公式.

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

一、選擇題

1.C 解析:關于y軸的對稱圖形,可得

圖象,再向右平移一個單位,即可得的圖象,即的圖

2,4,6

2.A 解析:由題可知,故選A.

3.D 解析:上恒成立,即恒成立,故選D.

4.C  解析:令公比為q,由a1=3,前三項的和為21可得q2+q-6=0,各項都為正數(shù),所以q=2,所以,故選C.

5.C  解析:由圖可知,陰影部分面積.

6.A  解析:故在[-2,2]上最大值為,所以最小值為,故選A.

7.A  解析:y值對應1,x可對應±1,y值對應4,x可對應±2,故定義域共有{1,2},{1,-2},{-1,2},{-1,-2},{1,-1,2},{1,-1,-2},{1,2,-2},{-1,2,-2},{-,1,-2,2}共9種情況.

8.B  可采取特例法,例皆為滿足條件的函數(shù),一一驗證可知選B.

二、填空題:

9.答案:6   解析:∵     ∴a7+a­11=6.

10.答案a=3、2π  解析:的上半圓

面積,故為2π.

11.答案:20  解析:由數(shù)列相關知識可知

12.答案:

解析:由題可知 ,故定義域為

13.答案:2   解析:由a,b,c成等差數(shù)列知①,由②,

由c>b>a知角B為銳角,③,聯(lián)立①②③得b=2.

故當時,

三、解答題:

15.解:(Ⅰ)由題可知函數(shù)定義域關于原點對稱.

    當,

    則

    ∴

    當

    則,

   ∴

    綜上所述,對于,∴函數(shù)是偶函數(shù).

(Ⅱ)當x>0時,,

∴函數(shù)上是減函數(shù),函數(shù)上是增函數(shù).

(另證:當;

∴函數(shù)上是減函數(shù),在上是增函數(shù).

16.解:(Ⅰ)∵函數(shù)圖象過點A(0,1)、B(,1)

  ∴b=c

∵當

  ③

聯(lián)立②③得        

(Ⅱ)①由圖象上所有點向左平移個單位得到的圖象

②由的圖象上所有點的縱坐標變?yōu)樵瓉淼?sub>倍,得到

的圖象

③由的圖象上所有點向下平移一個單位,得到

的圖象

17.(1)證明:由題設,得

又a1-1=1,

所以數(shù)列{an-n}是首項為1,且公比為4的等比數(shù)列.

(Ⅱ)解:由(Ⅰ)可知,于是數(shù)列{ an }的通項公式為

所以數(shù)列{an}的前n項和

18.分析:求停車場面積,需建立長方形的面積函數(shù). 這里自變量的選取十分關鍵,通常有代數(shù)和三角兩種設未知數(shù)的方法,如果設長方形PQCR的一邊長為x(不妨設PR=x),則另一邊長,

這樣SPQCR=PQ?PR=x?(100-),但該函數(shù)的最值不易求得,如果將∠BAP作為自變量,用它可表示PQ、PR,再建立面積函數(shù),則問題就容易得多,于是可求解如下;

解:延長RP交AB于M,設∠PAB=,則

AM=90

    <sub id="7ozll"></sub>
    <legend id="7ozll"><track id="7ozll"></track></legend>

             

      ,   ∵

      ∴當,SPQCR有最大值

      答:長方形停車場PQCR面積的最大值為平方米.

      19.解:(Ⅰ)【方法一】由

      依題設可知,△=(b+1)24c=0.

      .

      【方法二】依題設可知

      為切點橫坐標,

      于是,化簡得

      同法一得

      (Ⅱ)由

      可得

      依題設欲使函數(shù)內有極值點,

      則須滿足

      亦即

      故存在常數(shù),使得函數(shù)內有極值點.

      (注:若,則應扣1分. )

      20.解:(Ⅰ)設函數(shù)

         (Ⅱ)由(Ⅰ)可知

      可知使恒成立的常數(shù)k=8.

      (Ⅲ)由(Ⅱ)知 

      可知數(shù)列為首項,8為公比的等比數(shù)列

      即以為首項,8為公比的等比數(shù)列. 則 

      .