題目列表(包括答案和解析)
已知數(shù)列{an},a1=2a+1(a≠-1的常數(shù)),an=2an-1+n2-4n+2(n≥2,n∈N∗),數(shù)列{bn}的首項, b1=a,bn=an+n2(n≥2,n∈N∗).
(1)證明:{bn}從第2項起是以2為公比的等比數(shù)列并求{bn}通項公式;
(2)設Sn為數(shù)列{bn}的前n項和,且{Sn}是等比數(shù)列,求實數(shù)a的值;(3)當a>0時,求數(shù)列{an}的最小項.
(本小題10分)
已知。
(1)求f(x)的解析式,并寫出定義域;
(2)判斷f(x)的奇偶性并證明;
(3)當a>1時,求使f(x)成立的x的集合。
(本小題滿分6分)
已知函數(shù),( a>0 ,a≠1,a為常數(shù))
(1).當a=2時,求f(x)的定義域;
(2).當a>1時,判斷函數(shù)在區(qū)間
上的單調性;
(3).當a>1時,若f(x)在上恒取正值,求a應滿足的條件。
已知函數(shù)f(x)=lg(ax-bx)(a>1>b>0).
(1)求y=f(x)的定義域;
(2)在函數(shù)y=f(x)的圖象上是否存在不同的兩點,使得過這兩點的直線平行于x軸;
(3)當a,b滿足什么條件時,f(x)在(1,+∞)上恒取正值.
已知二次函數(shù)y=f1(x)的圖象以原點為頂點且過點(1,1),反比例函數(shù)y=f2(x)的圖象與直線y=x的兩個交點間距離為8,f(x)= f1(x)+ f2(x).
(Ⅰ) 求函數(shù)f(x)的表達式;
(Ⅱ) 證明:當a>3時,關于x的方程f(x)= f(a)有三個實數(shù)解.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com