題目列表(包括答案和解析)
設(shè)A是由m×n個(gè)實(shí)數(shù)組成的m行n列的數(shù)表,滿足:每個(gè)數(shù)的絕對值不大于1,且所有數(shù)的和為零,記s(m,n)為所有這樣的數(shù)表構(gòu)成的集合。
對于A∈S(m,n),記ri(A)為A的第ⅰ行各數(shù)之和(1≤ⅰ≤m),Cj(A)為A的第j列各數(shù)之和(1≤j≤n):
記K(A)為∣r1(A)∣,∣R2(A)∣,…,∣Rm(A)∣,∣C1(A)∣,∣C2(A)∣,…,∣Cn(A)∣中的最小值。
(1) 對如下數(shù)表A,求K(A)的值;
1 |
1 |
-0.8 |
0.1 |
-0.3 |
-1 |
(2)設(shè)數(shù)表A∈S(2,3)形如
1 |
1 |
c |
a |
b |
-1 |
求K(A)的最大值;
(3)給定正整數(shù)t,對于所有的A∈S(2,2t+1),求K(A)的最大值。
【解析】(1)因?yàn)?img
src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912442510881234/SYS201207091244551401982556_ST.files/image001.png">,
所以
(2) 不妨設(shè).由題意得
.又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912442510881234/SYS201207091244551401982556_ST.files/image006.png">,所以
,
于是,
,
所以,當(dāng)
,且
時(shí),
取得最大值1。
(3)對于給定的正整數(shù)t,任給數(shù)表如下,
|
|
… |
|
|
|
… |
|
任意改變A的行次序或列次序,或把A中的每一個(gè)數(shù)換成它的相反數(shù),所得數(shù)表
,并且
,因此,不妨設(shè)
,
且。
由得定義知,
,
又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912442510881234/SYS201207091244551401982556_ST.files/image030.png">
所以
所以,
對數(shù)表:
1 |
1 |
… |
1 |
|
… |
|
|
|
… |
|
-1 |
… |
-1 |
則且
,
綜上,對于所有的,
的最大值為
已知數(shù)列是各項(xiàng)均不為0的等差數(shù)列,公差為d,
為其前n項(xiàng)和,且滿足
,
.?dāng)?shù)列
滿足
,
,
為數(shù)列
的前n項(xiàng)和.
(1)求數(shù)列的通項(xiàng)公式
和數(shù)列
的前n項(xiàng)和
;
(2)若對任意的,不等式
恒成立,求實(shí)數(shù)
的取值范圍;
(3)是否存在正整數(shù),使得
成等比數(shù)列?若存在,求出所有
的值;若不存在,請說明理由.
【解析】第一問利用在中,令n=1,n=2,
得 即
解得,,
[
又時(shí),
滿足
,
,
第二問,①當(dāng)n為偶數(shù)時(shí),要使不等式恒成立,即需不等式
恒成立.
,等號在n=2時(shí)取得.
此時(shí)
需滿足
.
②當(dāng)n為奇數(shù)時(shí),要使不等式恒成立,即需不等式
恒成立.
是隨n的增大而增大, n=1時(shí)
取得最小值-6.
此時(shí)
需滿足
.
第三問,
若成等比數(shù)列,則
,
即.
由,可得
,即
,
.
(1)(法一)在中,令n=1,n=2,
得 即
解得,,
[
又時(shí),
滿足
,
,
.
(2)①當(dāng)n為偶數(shù)時(shí),要使不等式恒成立,即需不等式
恒成立.
,等號在n=2時(shí)取得.
此時(shí)
需滿足
.
②當(dāng)n為奇數(shù)時(shí),要使不等式恒成立,即需不等式
恒成立.
是隨n的增大而增大, n=1時(shí)
取得最小值-6.
此時(shí)
需滿足
.
綜合①、②可得的取值范圍是
.
(3),
若成等比數(shù)列,則
,
即.
由,可得
,即
,
.
又,且m>1,所以m=2,此時(shí)n=12.
因此,當(dāng)且僅當(dāng)m=2,
n=12時(shí),數(shù)列中的
成等比數(shù)列
已知函數(shù),
.
(Ⅰ)若函數(shù)依次在
處取到極值.求
的取值范圍;
(Ⅱ)若存在實(shí)數(shù),使對任意的
,不等式
恒成立.求正整數(shù)
的最大值.
【解析】第一問中利用導(dǎo)數(shù)在在處取到極值點(diǎn)可知導(dǎo)數(shù)為零可以解得方程有三個(gè)不同的實(shí)數(shù)根來分析求解。
第二問中,利用存在實(shí)數(shù),使對任意的
,不等式
恒成立轉(zhuǎn)化為
,恒成立,分離參數(shù)法求解得到范圍。
解:(1)
①
(2)不等式 ,即
,即
.
轉(zhuǎn)化為存在實(shí)數(shù),使對任意的
,不等式
恒成立.
即不等式在
上恒成立.
即不等式在
上恒成立.
設(shè),則.
設(shè),則
,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911530204634527/SYS201207091153477963415106_ST.files/image016.png">,有
.
故在區(qū)間
上是減函數(shù)。又
故存在,使得
.
當(dāng)時(shí),有
,當(dāng)
時(shí),有
.
從而在區(qū)間
上遞增,在區(qū)間
上遞減.
又[來源:]
所以當(dāng)時(shí),恒有
;當(dāng)
時(shí),恒有
;
故使命題成立的正整數(shù)m的最大值為5
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com