8天堂资源在线,国产成人久久av免费高潮,国产精品亚洲综合色区韩国,国产欧美va天堂在线观看视频,xx色综合

(1)求數(shù)列的通項(xiàng)公式, 查看更多

 

題目列表(包括答案和解析)





⑴求數(shù)列的通項(xiàng)公式;
⑵設(shè),若對(duì)恒成立,求實(shí)數(shù)的取值范圍;
⑶是否存在以為首項(xiàng),公比為的數(shù)列,,使得數(shù)列中每一項(xiàng)都是數(shù)列中不同的項(xiàng),若存在,求出所有滿足條件的數(shù)列的通項(xiàng)公式;若不存在,說(shuō)明理由

查看答案和解析>>

數(shù)列的通項(xiàng)公式

(1)求:f(1)、f(2)、f(3)、f(4)的值;

(2)由上述結(jié)果推測(cè)出計(jì)算f(n)的公式,并用數(shù)學(xué)歸納法加以證明.

查看答案和解析>>

設(shè)數(shù)列的通項(xiàng)公式為。數(shù)列定義如下:對(duì)于正整數(shù)m,是使得不等式成立的所有n中的最小值。  (1)若,求b3;   (2)若,求數(shù)列的前2m項(xiàng)和公式;(3)是否存在p和q,使得?如果存在,求p和q的取值范圍;如果不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

設(shè)數(shù)列的通項(xiàng)公式為。數(shù)列定義如下:對(duì)于正整數(shù)m,是使得不等式成立的所有n中的最小值。

   (1)若,求b3;

   (2)若,求數(shù)列的前2m項(xiàng)和公式;

   (3)是否存在p和q,使得?如果存在,求p和q的取值范圍;如果不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

設(shè)數(shù)列的通項(xiàng)公式為。數(shù)列定義如下:對(duì)于正整數(shù)m,是使得不等式成立的所有n中的最小值。 (1)若,求b3;  (2)若,求數(shù)列的前2m項(xiàng)和公式;(3)是否存在p和q,使得?如果存在,求p和q的取值范圍;如果不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

 

一、選擇題

1.D   2.A   3.C   4.B   5.D   6.A   7.A   8.A   9.B   10.D

      <cite id="jw6de"><track id="jw6de"></track></cite>
      <p id="jw6de"></p>

      2,4,6

      11.40    12.   13.3    14.①②③④

      三、解答題

      15.解:(1)設(shè)數(shù)列

      由題意得:

      解得:

         (2)依題

      ,

      為首項(xiàng)為2,公比為4的等比數(shù)列

         (2)由

      16.解:(1),

         (2)由

       

      17.解法1:

      設(shè)輪船的速度為x千米/小時(shí)(x>0),

      則航行1公里的時(shí)間為小時(shí)。

      依題意,設(shè)與速度有關(guān)的每小時(shí)燃料費(fèi)用為

      答:輪船的速度應(yīng)定為每小時(shí)20公里,行駛1公里所需的費(fèi)用總和最小。

      解法2:

      設(shè)輪船的速度為x千米/小時(shí)(x>0),

      則航行1公里的時(shí)間為小時(shí),

      依題意,設(shè)與速度有關(guān)的每小時(shí)燃料費(fèi)用為

      元,

      且當(dāng)時(shí)等號(hào)成立。

      答:輪船的速度應(yīng)定為每小時(shí)20公里,行駛1公里所需的費(fèi)用總和最小。

      18.證明:(1)連結(jié)AC、BD交于點(diǎn)O,再連結(jié)MO ,

         (2)

         

      19.解:(1),半徑為1依題設(shè)直線,

          由圓C與l相切得:

         (2)設(shè)線段AB中點(diǎn)為

          代入即為所求的軌跡方程。

         (3)

         

      20.解:(1)

         (2)

         (3)由(2)知

      在[-1,1]內(nèi)有解