題目列表(包括答案和解析)
(本小題滿分14分)設(shè)橢圓與拋物線
的焦點均在
軸上,
的中心和
的頂點均為原點,從每條曲線上至少取兩個點,將其坐標(biāo)記錄于下表中:
|
|
|
|
|
|
|
|
|
|
|
|
1)求,
的標(biāo)準(zhǔn)方程, 并分別求出它們的離心率
;
2)設(shè)直線與橢圓
交于不同的兩點
,且
(其中
坐標(biāo)原點),請問是否存在這樣的直線
過拋物線
的焦點
若存在,求出直線
的方程;若不存在,請說明理由.
(本小題滿分14分)設(shè)橢圓與拋物線
的焦點均在
軸上,
的中心和
的頂點均為原點,從每條曲線上至少取兩個點,將其坐標(biāo)記錄于下表中:
![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
(本小題滿分14分)已知拋物線
(1)設(shè)是C1的任意兩條互相垂直的切線,并設(shè)
,證明
:點M的縱坐標(biāo)為定值;
(2)在C1上是否存在點P,使得C1在點P處切線與C2相交于兩點A、B,且AB的中垂線恰為C1的切線?若存在,求出點P的坐標(biāo);若不存在,說明理由。
(本小題滿分14分)某城市自西向東和自南向北的兩條主干道的東南方位有一塊空地市規(guī)劃部門計劃利用它建設(shè)一個供市民休閑健身的小型綠化廣場,如下圖所示是步行小道設(shè)計方案示意圖,
其中,分別表示自西向東,自南向北的兩條主干道.設(shè)計方案是自主干道交匯點
處修一條步行小道,小道為拋物線
的一段,在小道上依次以點
為圓心,修一系列圓型小道,這些圓型小道與主干道
相切,且任意相鄰的兩圓彼此外切,若
(單位:百米)且
.
(1)記以為圓心的圓與主干道
切于
點,證明:數(shù)列
是等差數(shù)列,并求
關(guān)于
的表達式;
(2)記的面積為
,根據(jù)以往施工經(jīng)驗可知,面積為
的圓型小道的施工工時為
(單位:周).試問5周時間內(nèi)能否完成前
個圓型小道的修建?請說明你的理由.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com