題目列表(包括答案和解析)
已知 設(shè)P:函數(shù)
在R上單調(diào)遞減; Q:不等式
的解集為R,若“P或Q”是真命題,“P且Q”是假命題,求
的取值范圍.
[解題思路]:“P或Q”是真命題,“P且Q”是假命題,根據(jù)真假表知,P,Q之中一真一假,因此有兩種情況,要分類討論.
已知數(shù)列是首項(xiàng)為
的等比數(shù)列,且滿足
.
(1) 求常數(shù)的值和數(shù)列
的通項(xiàng)公式;
(2) 若抽去數(shù)列中的第一項(xiàng)、第四項(xiàng)、第七項(xiàng)、……、第
項(xiàng)、……,余下的項(xiàng)按原來的順序組成一個(gè)新的數(shù)列
,試寫出數(shù)列
的通項(xiàng)公式;
(3) 在(2)的條件下,設(shè)數(shù)列的前
項(xiàng)和為
.是否存在正整數(shù)
,使得
?若存在,試求所有滿足條件的正整數(shù)
的值;若不存在,請(qǐng)說明理由.
【解析】第一問中解:由得
,,
又因?yàn)榇嬖诔?shù)p使得數(shù)列為等比數(shù)列,
則即
,所以p=1
故數(shù)列為首項(xiàng)是2,公比為2的等比數(shù)列,即
.
此時(shí)也滿足,則所求常數(shù)
的值為1且
第二問中,解:由等比數(shù)列的性質(zhì)得:
(i)當(dāng)時(shí),
;
(ii) 當(dāng)時(shí),
,
所以
第三問假設(shè)存在正整數(shù)n滿足條件,則,
則(i)當(dāng)時(shí),
,
已知函數(shù)在
與
時(shí)都取得極值.
(1)求的值及函數(shù)
的單調(diào)區(qū)間;www.7caiedu.cn
(2)若對(duì),不等式
恒成立,求
的取值范圍.
【解析】根據(jù)與
是
的兩個(gè)根,可求出a,b的值,然后利用導(dǎo)數(shù)確定其單調(diào)區(qū)間即可.
(2)此題本質(zhì)是利用導(dǎo)數(shù)其函數(shù)f(x)在區(qū)間[-1,2]上的最大值,然后利用,即可解出c的取值范圍.
已知函數(shù)其中
為自然對(duì)數(shù)的底數(shù),
.(Ⅰ)設(shè)
,求函數(shù)
的最值;(Ⅱ)若對(duì)于任意的
,都有
成立,求
的取值范圍.
【解析】第一問中,當(dāng)時(shí),
,
.結(jié)合表格和導(dǎo)數(shù)的知識(shí)判定單調(diào)性和極值,進(jìn)而得到最值。
第二問中,∵,
,
∴原不等式等價(jià)于:,
即, 亦即
分離參數(shù)的思想求解參數(shù)的范圍
解:(Ⅰ)當(dāng)時(shí),
,
.
當(dāng)在
上變化時(shí),
,
的變化情況如下表:
|
|
|
|
|
|
|
|
- |
|
+ |
|
|
|
|
|
|
1/e |
∴時(shí),
,
.
(Ⅱ)∵,
,
∴原不等式等價(jià)于:,
即, 亦即
.
∴對(duì)于任意的,原不等式恒成立,等價(jià)于
對(duì)
恒成立,
∵對(duì)于任意的時(shí),
(當(dāng)且僅當(dāng)
時(shí)取等號(hào)).
∴只需,即
,解之得
或
.
因此,的取值范圍是
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com