8天堂资源在线,国产成人久久av免费高潮,国产精品亚洲综合色区韩国,国产欧美va天堂在线观看视频,xx色综合

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

巢湖市2009屆高三第一次教學(xué)質(zhì)量檢測試題學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

一、DABAD   CCCBB   AD學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

二、13.  14.     15      16. 學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

三、17.(Ⅰ)∵,學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

,         (2分)學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

.                     (4分)學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

,∴,學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

, ∴.               (6分)學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

(Ⅱ)由,學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

    整理得,∴.              (10分)學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

18.由題意知,Ea⊥平面ABC,DC⊥平面ABC,AE∥DC,ae=2,dc=4,ab⊥ac,且AB=AC=2.學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)(Ⅰ)∵Ea⊥平面ABC,∴ea⊥ab,學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

又∵ab⊥ac,   ∴ab⊥平面acde,學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

        ∴四棱錐b-acde的高h(yuǎn)=ab=2,梯形acde的面積S=6,學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

,即所求幾何體的體積為4.  (4分)學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

(Ⅱ)證明:取bc中點(diǎn)G,連接em,mG,aG.學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)∵m為db的中點(diǎn),∴mG∥DC,且學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

      ∴mG  ae,∴四邊形aGme為平行四邊形,學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

      ∴em∥aG.學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

又∵AG平面ABC,∴EM∥平面ABC.           (8分)學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

(Ⅲ)解法1:由(Ⅱ)知,em∥aG.學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

又∵平面BCD⊥底面ABC,aG⊥bc,學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

∴AG⊥平面BCD,∴EM⊥平面BCD.學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

又∵EM平面BDE,∴平面BDE⊥平面BCD.學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

在平面BCD中,過M作MN⊥DB交DC于點(diǎn)N,學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

∴MN⊥平面BDE  點(diǎn)n即為所求的點(diǎn).學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

,∴,學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

,∴學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

∴邊DC上存在點(diǎn)N,當(dāng)DN=DC時(shí),NM⊥平面BDE.學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

解法2:以A為原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,則A(0,0,0),B(0,2,0),C(-2,0,0),D(-2,0,4),E(0,0,2),M(-1,1,2),(2,2,-4),(2,0,-2),(0,0,-4),(1,1,-2).學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)    假設(shè)在DC邊上存在點(diǎn)N滿足題意.學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

    學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

∴邊DC上存在點(diǎn)N,當(dāng)DN=DC時(shí),NM⊥平面BDE.        (12分)學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

19.(Ⅰ)由題意知,        (2分)學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

當(dāng)時(shí),不等式.學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

當(dāng)時(shí),不等式的解集為;學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

當(dāng)時(shí),不等式的解集為.      (6分)學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

(Ⅱ)

,且,

,

,即.                          (12分)

20. (Ⅰ),

,∴.                (4分)

,.

.

0

極大值

極小值

故函數(shù)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為.  (8分)

(Ⅱ)由(Ⅰ)知,上遞增,在上遞減,在上遞增,在時(shí),取極大值.

又∵,

∴在上,.

又∵,

(當(dāng)且僅當(dāng)時(shí)取等號(hào)).

的最小值為.

        ∵,∴對(duì)于.        (12分)

21.(Ⅰ)動(dòng)點(diǎn)的軌跡的方程為;                         (3分)

(Ⅱ)解法1

當(dāng)直線的斜率不存在時(shí),,,不合題意;

當(dāng)直線的斜率存在時(shí),設(shè)過的直線,代入曲線方程得

.

設(shè),則,

,

解得 ,

∴所求的直線的方程為.                  (9分)

解法2

當(dāng)直線軸時(shí),, ,不合題意;

當(dāng)直線不為軸時(shí),設(shè)過的直線,代入曲線方程得

.

設(shè),則,

=,解得

∴所求的直線的方程為.                  (9分)

(Ⅲ)設(shè),

處曲線的切線方程為

;令.

.

(當(dāng)時(shí)取等號(hào)).

,∴面積的最小值為2.   (14分)

22.(Ⅰ)由,即.

,∴,∴.

,∴

即數(shù)列的通項(xiàng)公式為.                    (5分)

(Ⅱ)由(Ⅰ)知,.

設(shè)     ①

  ②

①-②,得

          ,

,即數(shù)列的前項(xiàng)和為.   (10分)

(Ⅲ)假設(shè)存在實(shí)數(shù),使得對(duì)一切正整數(shù),總有成立,

總成立.

設(shè),

當(dāng) 時(shí),,且遞減;當(dāng)時(shí),,且遞減,

最大,∴,∴.

故存在,使得對(duì)一切正整數(shù),總有成立.       (14分)

命題人:廬江二中   孫大志

柘皋中學(xué)   孫  平

巢湖四中   胡善俊

                                      審題人:和縣一中   賈相偉

巢湖市教研室  張永超

 

 


同步練習(xí)冊(cè)答案