機(jī)密★啟用前 【考試時(shí)間:5月5日 15:00~17:00】
昆明市2008~2009學(xué)年高三復(fù)習(xí)適應(yīng)性檢測(cè)
理科數(shù)學(xué)試卷
本試卷分第Ⅰ卷(選擇題)和第Ⅱ卷(非選擇題)兩部分。第Ⅰ卷1至3頁(yè),第Ⅱ卷4至6頁(yè). 考試結(jié)束后,將本試卷和答題卡一并交回。滿分150分,考試用時(shí)120分鐘。
第Ⅰ卷(選擇題 ,共60分)
注意事項(xiàng):
1. 答題前,考生務(wù)必用黑色碳素筆將自己的姓名、考號(hào)在答題卡上填寫清楚,并認(rèn)真核準(zhǔn)條形碼上的考號(hào)、姓名,在規(guī)定的位置貼好條形碼。
2. 每小題選出答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑。如需改動(dòng),用橡皮擦擦干凈后,再選涂其它答案標(biāo)號(hào)。答在試卷上的答案無效。
參考公式:
如果事件A、B互斥,那么 球的表面積公式
如果事件A、B相互獨(dú)立,那么 其中R表示球的半徑
球的體積公式
如果事件A在一次試驗(yàn)中發(fā)生的概率是P,那么
n次獨(dú)立重復(fù)試驗(yàn)中恰好發(fā)生k次的概率 其中R表示球的半徑
一.選擇題:本大題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。
(1)函數(shù)的定義域是
(A) (B)
(C)
(D)
(2)若復(fù)數(shù)滿足
,則在復(fù)平面內(nèi)
所對(duì)應(yīng)的點(diǎn)在
(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限
(3)函數(shù)的最小正周期是
(A)
(B)
(C)
(D)
(4)焦點(diǎn)在軸上,中心在原點(diǎn)的橢圓上一點(diǎn)到兩焦點(diǎn)的距離之和為
,若該橢圓的離心率為
,則橢圓的方程是
(A) (B)
(C)
(D)
(5)若把汽車的行駛路程
看作時(shí)間
的函數(shù),下圖是函數(shù)
在
上的圖像,則在
上汽車的行駛過程為
(A)先加速行駛、然后勻速行駛、再加速行駛
(B)先減速行駛、然后勻速行駛、再加速行駛
(C)先加速行駛、然后勻速行駛、再減速行駛
(D)先減速行駛、然后勻速行駛、再減速行駛
(6)若+
+…+
+
+
,則
等于
(A)
(B)
(C)
(D)
(7)在公差不為零的等差數(shù)列中,
,
、
、
成等比數(shù)列.若
是數(shù)列
的前
項(xiàng)和,則
是
(A)
(B)
(C)
(D)
(8)2名醫(yī)生和4名護(hù)士分配到兩所社區(qū)醫(yī)院進(jìn)行“健康普查”活動(dòng),每所醫(yī)院分配1名醫(yī)生和2名護(hù)士的不同分配方案共有
(A)6種 (B)8種 (C)12種 (D)24種
(9)若函數(shù)存在反函數(shù),則
的取值范圍是
(A) (B)
(C)
(D)
(10)在正中,
為
邊上的高,
為邊
的中點(diǎn).若將
沿
翻折成直二面角
,則異面直線
與
所成角的大小為
(A) (B)
(C)
(D)
(11)已知點(diǎn),直線
,
是坐標(biāo)原點(diǎn),
是直線
上的一點(diǎn),若
,則
的最小值是
(A)
(B)
(C)
(D)
(12)若是實(shí)數(shù),則關(guān)于
的方程組
有四組不同實(shí)數(shù)解的一個(gè)充分非必要條件是
(A) (B)
(C)
(D)
機(jī)密★啟用前 【考試時(shí)間:5月5日 15:00~17:00】
昆明市2008~2009學(xué)年高三復(fù)習(xí)適應(yīng)性檢測(cè)
理科數(shù)學(xué)試卷
第Ⅱ卷(非選擇題,共90分)
注意事項(xiàng):
第Ⅱ卷共3頁(yè),10小題 ,用黑色碳素筆將答案答在答題卡上,答在試卷上的答案無效。
二.填空題:本大題共4小題,每小題5分,共20分。把答案直接答在答題卡上。
(13)拋物線的焦點(diǎn)坐標(biāo)為
.
(14)已知三棱柱的側(cè)棱長(zhǎng)與底面邊長(zhǎng)都相等,
在底面
的射影是
的中點(diǎn),則
與側(cè)面
所成角的正切值等于
.
(15)某實(shí)驗(yàn)室至少需某種化學(xué)藥品
種包裝購(gòu)買的數(shù)量都不能超過5袋,則在滿足需要的條件下,花費(fèi)最少為 元.
(16)觀察以下等式
1=1
3+5=8
7+9+11=27
13+15+17+19=64
… …
寫出一個(gè)等式,使之既包含以上四式、又具有一般性質(zhì).這個(gè)等式是:
.
(17)(本小題10分)
三.解答題:本大題共6小題,共70分,解答應(yīng)寫出文字說明,證明過程或演算步驟。
在中,
、
、
分別是角
、
、
的對(duì)邊,且
.
(Ⅰ)求角的大;
(Ⅱ)若的面積是
,且
,求
.
(18)(本小題12分)
如圖,四棱錐的底面
是正方形,
面
.
(Ⅰ)證明:平面平面
;
(Ⅱ)設(shè).
為
的中點(diǎn),求二面角
的大小.
(19)(本小題12分)
某工廠新開發(fā)的一種產(chǎn)品有、
兩項(xiàng)技術(shù)指標(biāo)需要檢測(cè),設(shè)各項(xiàng)技術(shù)指標(biāo)達(dá)標(biāo)與否互不影響.若恰有一項(xiàng)技術(shù)指標(biāo)達(dá)標(biāo)的概率為
,至少有一項(xiàng)技術(shù)指標(biāo)達(dá)標(biāo)的概率為
.檢驗(yàn)規(guī)定兩項(xiàng)技術(shù)指標(biāo)都達(dá)標(biāo)的新產(chǎn)品為合格品.
(Ⅰ)求一件新產(chǎn)品經(jīng)過檢測(cè)為合格品的概率;
(Ⅱ)工廠規(guī)定:若每生產(chǎn)一件合格的新產(chǎn)品,該工人將獲得獎(jiǎng)金100元;若生產(chǎn)一件不合格的新產(chǎn)品,該工人將被罰款50元.該工人一個(gè)月能生產(chǎn)新產(chǎn)品20件,求該工人一個(gè)月獲得獎(jiǎng)金的數(shù)學(xué)期望.
(20)(本小題12分)
已知雙曲線焦點(diǎn)在軸上、中心在坐標(biāo)原點(diǎn)
,左、右焦點(diǎn)分別為
、
,
為雙曲線右支上一點(diǎn),且
,
.
(Ⅰ)求雙曲線的離心率;
(Ⅱ)設(shè),過
的直線
與雙曲線的兩漸近線分別交于
、
兩點(diǎn),
與
同向,
的面積為
.若
,求
的斜率
的取值范圍.
(21)(本小題12分)
已知函數(shù).
(Ⅰ)當(dāng)時(shí),若函數(shù)
在
上為增函數(shù),求實(shí)數(shù)
的最小值;
(Ⅱ)設(shè)函數(shù)的圖像關(guān)于原點(diǎn)
對(duì)稱,在點(diǎn)
處的切線為
,
與函數(shù)
的圖像交于另一點(diǎn)
.若
在
軸上的射影分別為
、
,
,求
的值.
(22)(本小題12分)
已知數(shù)列中,
,
.
(Ⅰ)求、
;
(Ⅱ)求;
(Ⅲ) 設(shè)為數(shù)列
的前n項(xiàng)和,證明:
.
昆明市2008~2009學(xué)年高三復(fù)習(xí)適應(yīng)性檢測(cè)
一.選擇題:本大題共12小題,每小題5分,共60分。
(1)B (2)A (3)B (4)A (5)C (6)D
(7)A (8)C (9)B (10)A (11)D (12)B
二.填空題:本大題共4小題,每小題5分,共20分。
(13) (14)
(15)
(16)
三.解答題:本大題共6小題,共70分,解答應(yīng)寫出文字說明,證明過程或演算步驟。
(17)(本小題滿分10分)
(Ⅰ)解法一:由正弦定理得.
故 ,
又 ,
故 ,
即 ,
故 .
因?yàn)?nbsp; ,
故 ,
又 為三角形的內(nèi)角,
所以
. ………………………5分
解法二:由余弦定理得 .
將上式代入 整理得
.
故 ,
又 為三角形內(nèi)角,
所以 .
………………………5分
(Ⅱ)解:因?yàn)?sub>.
故 ,
由已知 得
又因?yàn)?nbsp; .
得 ,
所以
,
解得
. ………………………………………………10分
(18)(本小題滿分12分)
(Ⅰ)證明:
∵面
,
面
,
∴.
又∵底面是正方形,
∴.
又∵,
∴面
,
又∵面
,
∴平面平面
. ………………………………………6分
(Ⅱ)解法一:如圖建立空間直角坐標(biāo)系.
設(shè),則
,在
中,
.
∴、
、
、
、
、
.
∵
為
的中點(diǎn),
,
∴.
設(shè)是平面
的一個(gè)法向量.
則由
可求得
.
由(Ⅰ)知是平面
的一個(gè)法向量,
且,
∴,即
.
∴二面角的大小為
. ………………………………………12分
解法二:
設(shè)
,則
,
在中,
.
設(shè),連接
,過
作
于
,
連結(jié),由(Ⅰ)知
面
.
∴在面
上的射影為
,
∴.
故為二面角
的平面角.
在中,
,
,
.
∴,
∴.
∴.
即二面角的大小為
. …………………………………12分
(19)(本小題滿分12分)
(Ⅰ)解:設(shè)、
兩項(xiàng)技術(shù)指標(biāo)達(dá)標(biāo)的概率分別為
、
.
由題意得:
…………2分
∴.
即一個(gè)零件經(jīng)過檢測(cè)為合格品的概率為. …………6分
(Ⅱ)設(shè)該工人一個(gè)月生產(chǎn)的20件新產(chǎn)品中合格品有件,獲得獎(jiǎng)金
元,則
. ………………8分
~
,
,
………………10分
.
即該工人一個(gè)月獲得獎(jiǎng)金的數(shù)學(xué)期望是800元. ………………12分
(20)(本小題滿分12分)
解:(Ⅰ)設(shè)雙曲線方程為,
,
由,
及勾股定理得
,
由雙曲線定義得 .
則.
………………………………………5分
(Ⅱ),
,故雙曲線的兩漸近線方程為
.
因?yàn)?sub>過
, 且
與
同向,故設(shè)
的方程為
,
則
又的面積
,所以
.
可得與
軸的交點(diǎn)為
.
設(shè)與
交于點(diǎn)
,
與
交于點(diǎn)
,
由得
;由
得
.
故,
,
,
從而.
故的取值范圍是
. …………………………12分
(21)(本小題滿分12分)
解:(Ⅰ),
.
又因?yàn)楹瘮?shù)在
上為增函數(shù),
在
上恒成立,等價(jià)于
在
上恒成立.
又,
故當(dāng)且僅當(dāng)時(shí)取等號(hào),而
,
的最小值為
.
………………………………………6分
(Ⅱ)由已知得:函數(shù)為奇函數(shù),
,
, ………………………………7分
.
切點(diǎn)為
,其中
,
則切線的方程為:
……………………8分
由,
得.
又,
,
,
,
或
,由題意知,
從而.
,
,
.
………………………………………12分
(22)(本小題滿分12分)
(Ⅰ)解: 由,
得
,
. …………………………3分
(Ⅱ)由(Ⅰ)歸納得, ………………………4分
用數(shù)學(xué)歸納法證明:
①當(dāng)時(shí),
成立.
②假設(shè)時(shí),
成立,
那么
所以當(dāng)時(shí),等式也成立.
由①、②得對(duì)一切
成立. ……………8分
(Ⅲ)證明: 設(shè),則
,
所以在
上是增函數(shù).
故.
即.
因?yàn)?sub>,
故.
=
.…………12分
本資料由《七彩教育網(wǎng)》www.7caiedu.cn 提供!
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com