【題目】已知橢圓C:+
=1(a>b>0)的離心率為
,直線l:x+2y=4與橢圓有且只有一個(gè)交點(diǎn)T.
(I)求橢圓C的方程和點(diǎn)T的坐標(biāo);
(Ⅱ)O為坐標(biāo)原點(diǎn),與OT平行的直線l′與橢圓C交于不同的兩點(diǎn)A,B,直線l′與直線l交于點(diǎn)P,試判斷是否為定值,若是請(qǐng)求出定值,若不是請(qǐng)說明理由.
【答案】(I)+
=1,T(1,
); (Ⅱ)見解析.
【解析】
(I)由橢圓的離心率為得到 b2=
a2,根據(jù)直線l:x+2y=4與橢圓有且只有一個(gè)交點(diǎn)T得到△=0,解得a2=4,b2=3,即得橢圓的方程. (Ⅱ)先計(jì)算出|PT|2=
t2,|PA|=
=
|
﹣x1|,|PB|=
|
﹣x2|,再計(jì)算
=
為定值.
(I)由橢圓的離心率e==
=
,則b2=
a2,
則,消去x,整理得:
y2﹣16y+16﹣a2=0,①
由△=0,解得:a2=4,b2=3,
所以橢圓的標(biāo)準(zhǔn)方程為:+
=1;所以
=
,則T(1,
),
(Ⅱ)設(shè)直線l′的方程為y=x+t,由
,解得P的坐標(biāo)為(1﹣
,
+
),
所以|PT|2=t2,
設(shè)設(shè)A(x1,y1),B(x2,y2),聯(lián)立,消去y整理得x2+tx+
﹣1=0,
則x1+x2=﹣t,x1x2=,△=t2﹣4(
﹣1)>0,t2<12,
y1=x1+t,y2=
x2+t,|PA|=
=
|
﹣x1|,
同理|PB|=|
﹣x2|,
|PA||PB|=|(
﹣x1)(
﹣x2)|=
|
﹣
(x1+x2)+x1x2|,
|
﹣
(﹣t)+
|=
t2,所以
=
=
,
所以=
為定值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱柱ABCD-A1B1C1D1中,CD∥AB, AB⊥BC,AB=BC=2CD=2,側(cè)棱AA1⊥平面ABCD.且點(diǎn)M是AB1的中點(diǎn)
(1)證明:CM∥平面ADD1A1;
(2)求點(diǎn)M到平面ADD1A1的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的焦距為
,離心率為
,其右焦點(diǎn)為
,過點(diǎn)
作直線交橢圓于另一點(diǎn)
.
(Ⅰ)若,求
的面積;
(Ⅱ)若過點(diǎn)的直線與橢圓
相交于兩點(diǎn)
、
,設(shè)
為
上一點(diǎn),且滿足
(
為坐標(biāo)原點(diǎn)),當(dāng)
時(shí),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l:mx﹣y=1,若直線l與直線x+m(m﹣1)y=2垂直,則m的值為_____,動(dòng)直線l:mx﹣y=1被圓C:x2﹣2x+y2﹣8=0截得的最短弦長(zhǎng)為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長(zhǎng)為2的正方形ABCD中,E為線段AB的中點(diǎn),將△ADE沿直線DE翻折成△A′DE,使得平面A′DE⊥平面BCDE,F為線段A′C的中點(diǎn).
(Ⅰ)求證:BF∥平面A′DE;
(Ⅱ)求直線A′B與平面A′DE所成角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,離心率等于,它的一個(gè)頂點(diǎn)恰好是拋物線x2=8
y的焦點(diǎn).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)直線x=﹣2與橢圓交于P,Q兩點(diǎn),A,B是橢圓上位于直線x=﹣2兩側(cè)的動(dòng)點(diǎn),若直線AB的斜率為,求四邊形APBQ面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了研究某種藥物,用小白鼠進(jìn)行試驗(yàn),發(fā)現(xiàn)藥物在血液內(nèi)的濃度與時(shí)間的關(guān)系因使用方式的不同而不同。若使用注射方式給藥,則在注射后的3小時(shí)內(nèi),藥物在白鼠血液內(nèi)的濃度與時(shí)間t滿足關(guān)系式:
,若使用口服方式給藥,則藥物在白鼠血液內(nèi)的濃度
與時(shí)間t滿足關(guān)系式:
現(xiàn)對(duì)小白鼠同時(shí)進(jìn)行注射和口服該種藥物,且注射藥物和口服藥物的吸收與代謝互不干擾。
(1)若a=1,求3小時(shí)內(nèi),該小白鼠何時(shí)血液中藥物的濃度最高,并求出最大值?
(2)若使小白鼠在用藥后3小時(shí)內(nèi)血液中的藥物濃度不低于4,求正數(shù)a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為了解廣告投入對(duì)銷售收益的影響,在若干地區(qū)各投入萬元廣告費(fèi)用,并將各地的銷售收益繪制成頻率分布直方圖(如圖所示).由于工作人員操作失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從
開始計(jì)數(shù)的. [附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為.]
(1)根據(jù)頻率分布直方圖計(jì)算圖中各小長(zhǎng)方形的寬度;
(2)試估計(jì)該公司投入萬元廣告費(fèi)用之后,對(duì)應(yīng)銷售收益的平均值(以各組的區(qū)間中點(diǎn)值代表該組的取值);
(3)該公司按照類似的研究方法,測(cè)得另外一些數(shù)據(jù),并整理得到下表:
廣告投入 | 1 | 2 | 3 | 4 | 5 |
銷售收益 | 2 | 3 | 2 | 7 |
由表中的數(shù)據(jù)顯示, 與
之間存在著線性相關(guān)關(guān)系,請(qǐng)將(2)的結(jié)果填入空白欄,并求出
關(guān)于
的回歸直線方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com