【題目】已知點(diǎn)A(0,-2),橢圓E: (a>b>0)的離心率為
,F是橢圓E的右焦點(diǎn),直線AF的斜率為
,O為坐標(biāo)原點(diǎn).
(1)求E的方程;
(2)設(shè)過點(diǎn)A的動直線l與E相交于P,Q兩點(diǎn).當(dāng)△OPQ的面積最大時,求l的方程.
【答案】(1) (2)
【解析】試題分析:設(shè)出,由直線
的斜率為
求得
,結(jié)合離心率求得
,再由隱含條件求得
,即可求橢圓方程;(2)點(diǎn)
軸時,不合題意;當(dāng)直線
斜率存在時,設(shè)直線
,聯(lián)立直線方程和橢圓方程,由判別式大于零求得
的范圍,再由弦長公式求得
,由點(diǎn)到直線的距離公式求得
到
的距離,代入三角形面積公式,化簡后換元,利用基本不等式求得最值,進(jìn)一步求出
值,則直線方程可求.
試題解析:(1)設(shè),因?yàn)橹本
的斜率為
,
所以,
.
又
解得,
所以橢圓的方程為
.
(2)解:設(shè)
由題意可設(shè)直線的方程為:
,
聯(lián)立消去
得
,
當(dāng),所以
,即
或
時
.
所以
點(diǎn)到直線
的距離
所以,
設(shè),則
,
,
當(dāng)且僅當(dāng),即
,
解得時取等號,
滿足
所以的面積最大時直線
的方程為:
或
.
【方法點(diǎn)晴】本題主要考查待定系數(shù)法求橢圓方程及圓錐曲線求最值,屬于難題.解決圓錐曲線中的最值問題一般有兩種方法:一是幾何意義,特別是用圓錐曲線的定義和平面幾何的有關(guān)結(jié)論來解決,非常巧妙;二是將圓錐曲線中最值問題轉(zhuǎn)化為函數(shù)問題,然后根據(jù)函數(shù)的特征選用參數(shù)法、配方法、判別式法、三角函數(shù)有界法、函數(shù)單調(diào)性法以及均值不等式法,本題(2)就是用的這種思路,利用均值不等式法求三角形最值的.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】動點(diǎn)分別到兩定點(diǎn)
連線的斜率的乘積為
,設(shè)
的軌跡為曲線
分別為曲線
的左、右焦點(diǎn),則下列命題中:
(1)曲線的焦點(diǎn)坐標(biāo)為
;
(2)若,則
;
(3)當(dāng)時,△
的內(nèi)切圓圓心在直線
上;
(4)設(shè),則
的最小值為
;
其中正確命題的序號是:______________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】求以圓C1:x2+y2-12x-2y-13=0和圓C2:x2+y2+12x+16y-25=0的公共弦為直徑的圓C的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】銅仁市某工廠有25周歲以上(含25周歲)工人300名,25周歲以下工人200名.為研究工人的日平均生產(chǎn)量是否與年齡有關(guān),現(xiàn)采用分層抽樣的方法,從中抽取了100名工人,先統(tǒng)計(jì)了他們某月的日平均生產(chǎn)件數(shù),然后按工人年齡在“25周歲以上(含25周歲)”和“25周歲以下”分為兩組,再將兩組工人的日平均生產(chǎn)件數(shù)分成5組:[50,60),[60,70),[70,80),[80,90),[90,100]分別加以統(tǒng)計(jì),得到如圖所示的頻率分布直方圖.
(1)從樣本中日平均生產(chǎn)件數(shù)不足60件的工人中隨機(jī)抽取2人,求至少抽到一名“25周歲以下組”工人的概率;
(2)規(guī)定日平均生產(chǎn)件數(shù)不少于80件者為“生產(chǎn)能手”,請你根據(jù)已知條件完成2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為“生產(chǎn)能手與工人所在的年齡組有關(guān)”?
K2=
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線:
,直線
與拋物線
交于
,
兩點(diǎn).點(diǎn)
為拋物線上一動點(diǎn),直線
,
分別與
軸交于
,
.
(I)若的面積為
,求點(diǎn)
的坐標(biāo);
(II)當(dāng)直線時,求線段
的長;
(III)若與
面積相等,求
的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
(
,
,
)的圖象與
軸的交點(diǎn)中,相鄰兩個交點(diǎn)之間的距離為
,且圖象上一個最低點(diǎn)為
.
(1)求的解析式,對稱軸及對稱中心.
(2)該圖象可以由的圖象經(jīng)過怎樣的變化得到.
(3)當(dāng),求
的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某兒童節(jié)在“六一”兒童節(jié)推出了一項(xiàng)趣味活動.參加活動的兒童需轉(zhuǎn)動如圖所示的轉(zhuǎn)盤兩次,每次轉(zhuǎn)動后,待轉(zhuǎn)盤停止轉(zhuǎn)動時,記錄指針?biāo)竻^(qū)域中的數(shù).記兩次記錄的數(shù)分別為x,y.獎勵規(guī)則如下:
①若xy≤3,則獎勵玩具一個;
②若xy≥8,則獎勵水杯一個;
③其余情況獎勵飲料一瓶.
假設(shè)轉(zhuǎn)盤質(zhì)地均勻,四個區(qū)域劃分均勻,小亮準(zhǔn)備參加此項(xiàng)活動.
(1)求小亮獲得玩具的概率;
(2)請比較小亮獲得水杯與獲得飲料的概率的大小,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com