【題目】如圖,在多面體中,△
是等邊三角形,△
是等腰直角三角形,
,平面
平面
,
平面
,點
為
的中點,連接
.
(1)求證:∥平面
;
(2)若,求三棱錐
的體積.
科目:高中數學 來源: 題型:
【題目】A在直角坐標系中,曲線
的參數方程為
,(
為參數),直線
的方程為
以
為極點,
軸的正半軸為極軸建立極坐標系.
(1)求曲線和直線
的極坐標方程;
(2)若直線與曲線
交于
兩點,求
已知不等式
的解集為
.
(1)求的值;
(2)若,求證:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在極坐標系中,圓的極坐標方程為
,若以極點
為原點,極軸所在的直線為
軸建立平面直角坐標系
(1)求圓的參數方程;
(2)在直角坐標系中,點是圓
上的動點,試求
的最大值,并求出此時點
的直角坐標;
(3)已知為參數),曲線
為參數),若版曲線
上各點恒坐標壓縮為原來的
倍,縱坐標壓縮為原來的
倍,得到曲線
,設點
是曲線
上的一個動點,求它到直線
距離的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為
,橢圓
和拋物線
交于
兩點,且直線
恰好通過橢圓
的右焦點.
(1)求橢圓的標準方程;
(2)經過橢圓右焦點的直線
和橢圓
交于
兩點,點
在橢圓上,且
,
其中為坐標原點,求直線
的斜率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著手機的發(fā)展,“微信”越來越成為人們交流的一種方式.某機構對“使用微信交流”的態(tài)度進行調查,隨機抽取了50人,他們年齡的頻數分布及對“使用微信交流”贊成人數如下表.
年齡(單位:歲) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75) |
頻數 | 5 | 10 | 15 | 10 | 5 | 5 |
贊成人數 | 5 | 10 | 12 | 7 | 2 | 1 |
(Ⅰ)若以“年齡45歲為分界點”,由以上統(tǒng)計數據完成下面列聯表,并判斷是否有99%的把握認為“使用微信交流”的態(tài)度與人的年齡有關;
年齡不低于45歲的人數 | 年齡低于45歲的人數 | 合計 | |
贊成 | |||
不贊成 | |||
合計 |
(Ⅱ)若從年齡在[25,35)和[55,65)的被調查人中按照分層抽樣的方法選取6人進行追蹤調查,并給予其中3人“紅包”獎勵,求3人中至少有1人年齡在[55,65)的概率.
參考數據如下:
附臨界值表:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
的觀測值:
(其中
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數在
上有最大值1和最小值0,設
.
(1)求的值;
(2)若不等式在
上有解,求實數
的取值范圍;
(3)若方程 (
為自然對數的底數)有三個不同的實數解,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某研究型學習小組調查研究”中學生使用智能手機對學習的影響”.部分統(tǒng)計數據如下表:
參考數據:
參考公式: ,其中
(Ⅰ)試根據以上數據,運用獨立性檢驗思想,指出有多大把握認為中學生使用智能手機對學習有影響?
(Ⅱ)研究小組將該樣本中使用智能手機且成績優(yōu)秀的4位同學記為組,不使用智能手機且成績優(yōu)秀的8位同學記為
組,計劃從
組推選的2人和
組推選的3人中,隨機挑選兩人在學校升旗儀式上作“國旗下講話”分享學習經驗.求挑選的兩人恰好分別來自
、
兩組的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下面給出了四個類比推理:
(1)由“若則
”類比推出“若
為三個向量則
”;
(2)“a,b為實數,則a=b=0”類比推出“
為復數,若
”
(3)“在平面內,三角形的兩邊之和大于第三邊”類比推出“在空間中,四面體的任意三個面的面積之和大于第四個面的面積”
(4)“在平面內,過不在同一條直線上的三個點有且只有一個圓”類比推出“在空間中,過不在同一個平面上的四個點有且只有一個球”.
上述四個推理中,結論正確的個數有( )
A.1個 B.2個 C.3個 D.4個
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】現從某學校高一年級男生中隨機抽取50名測量身高,測量發(fā)現被測學生身高全部介于和
之間,將測量結果按如下方式分成6組:第1組
,第2組
,…,第6組
,下圖是按上述分組方法得到的頻率分布直方圖.
(1)求這50名男生身高的中位數,并估計該校高一全體男生的平均身高;
(2)求這50名男生當中身高不低于176的人數,并且在這50名身高不低于176
的男生中任意抽取2人,求這2人身高都低于180
的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com