【題目】已知0<x<2,0<y<2
,且M=
+
則M的最小值為( )
A.B.
C.2D.
【答案】D
【解析】
先根據(jù)兩點間距離公式化為動點到四個定點的距離和,再根據(jù)圖象確定最小值取法,即得結(jié)果.
解:根據(jù)題意,可知
表示點(x,y)與點A(
,0)的距離;
表示點(x,y)與點B(0,
)的距離;
表示點(x,y)與點C(
,2
)的距離;
表示點(x,y)與點D(2
,
)的距離.
M表示點(x,y)到A、B、C、D四個點的距離和的最小值.
則可畫圖如下:
∵
的最小值是點(x,y)在線段AC上,
同理,
的最小值是點(x,y)在線段BD上,
∴點(x,y)既在線段AC上,又在線段BD上,
∴點(x,y)即為圖中點P.
∴M的最小值為|AC|+|BD|=4.
故選:D.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線
的參數(shù)方程為
(
為參數(shù)).以坐標(biāo)原點
為原點,
軸正半軸為極軸建立極坐標(biāo)系,直線
的極坐標(biāo)方程為
.
(1)求曲線的普通方程和直線
的直角坐標(biāo)方程;
(2)設(shè)直線與
軸的交點為
,過點
作傾斜角為
的直線
與曲線
交于
兩點,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線的右頂點到其一條漸近線的距離等于
,拋物線
的焦點與雙曲線
的右焦點重合,則拋物線
上的動點
到直線
和
距離之和的最小值為( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】AB是圓O的直徑,點C是圓O上異于AB的動點,過動點C的直線VC垂直于圓O所在平面,D,E分別是VA,VC的中點.
(1)判斷直線DE與平面VBC的位置關(guān)系,并說明理由;
(2)當(dāng)△VAB為邊長為的正三角形時,求四面體V﹣DEB的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓,
是圓M內(nèi)一個定點,P是圓上任意一點,線段PN的垂直平分線l和半徑MP相交于點Q,當(dāng)點P在圓M上運動時,點Q的軌跡為曲線E
(1)求曲線E的方程;
(2)過點D(0,3)作直線m與曲線E交于A,B兩點,點C滿足 (O為原點),求四邊形OACB面積的最大值,并求此時直線m的方程;
(3)已知拋物線上,是否存在直線與曲線E交于G,H,使得G,H的中點F落在直線y=2x上,并且與拋物線相切,若直線存在,求出直線的方程,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】AB是圓O的直徑,點C是圓O上異于AB的動點,過動點C的直線VC垂直于圓O所在平面,D,E分別是VA,VC的中點.
(1)判斷直線DE與平面VBC的位置關(guān)系,并說明理由;
(2)當(dāng)△VAB為邊長為的正三角形時,求四面體V﹣DEB的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知的兩個頂點
,
的坐標(biāo)分別為
,
,圓
是
的內(nèi)切圓,在邊
,
,
上的切點分別為
,
,
,
,動點
的軌跡為曲線
.
(1)求曲線的方程;
(2)設(shè)直線與曲線
交于
,
兩點,點
在曲線
上,
是坐標(biāo)原點,若
,判斷四邊形
的面積是否為定值?若為定值,求出該定值;如果不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形中,
,
為
的中點,現(xiàn)將
與
折起,使得平面
及平面
都與平面
垂直.
(1)求證:平面
;
(2)求二面角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com