(12分)已知橢圓中心在原點,一個焦點為
,且長軸長與短軸長的比是
。
(1)求橢圓的方程;(5分)
(2)是否存在斜率為的直線
,使直線
與橢圓
有公共點,且原點
與直線
的距離等于4;若存在,求出直線
的方程,若不存在,說明理由。(7分)。
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
已知橢圓的左、右焦點分別為
,離心率
,
.
(I)求橢圓的標準方程;
(II)過點的直線
與該橢圓交于
兩點,且
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(滿分12分)已知點,直線
:
交
軸于點
,點
是
上的動點,過點
垂直于
的直線與線段
的垂直平分線交于點
.
(Ⅰ)求點的軌跡
的方程;(Ⅱ)若 A、B為軌跡
上的兩個動點,且
證明直線AB必過一定點,并求出該定點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知雙曲線C的中心在原點,拋物線的焦點是雙曲線C的一個焦點,且雙曲線經(jīng)過點
,又知直線
與雙曲線C相交于A、B兩點.
(1)求雙曲線C的方程;
(2)若,求實數(shù)k值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知平面內一動點P到F(1,0)的距離比點P到軸的距離少1.
(1)求動點P的軌跡C的方程;
(2)過點F的直線交軌跡C于A,B兩點,交直線于
點,且
,
,
求的值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分12分)已知半徑為6的圓與
軸相切,圓心
在直線
上且在第二象限,直線
過點
.
(Ⅰ)求圓的方程;
(Ⅱ)若直線與圓
相交于
兩點且
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題14分)已知橢圓的離心率為
,以原點為圓心,橢圓短半軸長為半徑的圓與直線
相切,
分別是橢圓的左右兩個頂點,
為橢圓
上的動點.
(1)求橢圓的標準方程;
(2)若與
均不重合,設直線
的斜率分別為
,求
的值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知雙曲線C的中心在原點,拋物線的焦點是雙曲線C的一個焦點,且雙曲線經(jīng)過點
,又知直線
與雙曲線C相交于A、B兩點.
(1)求雙曲線C的方程;
(2)若,求實數(shù)k值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com