【題目】某市教育局對該市普通高中學(xué)生進行學(xué)業(yè)水平測試,試卷滿分120分,現(xiàn)從全市學(xué)生中隨機抽查了10名學(xué)生的成績,其莖葉圖如下圖所示:
(1)已知10名學(xué)生的平均成績?yōu)?8,計算其中位數(shù)和方差;
(2)已知全市學(xué)生學(xué)習(xí)成績分布服從正態(tài)分布,某校實驗班學(xué)生30人.
①依據(jù)(1)的結(jié)果,試估計該班學(xué)業(yè)水平測試成績在的學(xué)生人數(shù)(結(jié)果四舍五入取整數(shù));
②為參加學(xué)校舉行的數(shù)學(xué)知識競賽,該班決定推薦成績在的學(xué)生參加預(yù)選賽若每個學(xué)生通過預(yù)選賽的概率為
,用隨機變量
表示通過預(yù)選賽的人數(shù),求
的分布列和數(shù)學(xué)期望.
正態(tài)分布參考數(shù)據(jù):
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax2-ax-xln x,且f(x)≥0.
(1)求a;
(2)證明:f(x)存在唯一的極大值點x0,且e-2<f(x0)<2-2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底面ABCD是菱形,∠ABC=60°,為正三角形,且側(cè)面PAB⊥底面ABCD. E,M分別為線段AB,PD的中點.
(I)求證:PE⊥平面ABCD;
(II)求證:PB//平面ACM;
(III)在棱CD上是否存在點G,使平面GAM⊥平面ABCD,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點,圓
,點
是圓上一動點,
的垂直平分線與
交于點
.
(1)求點的軌跡方程;
(2)設(shè)點的軌跡為曲線
,過點
且斜率不為0的直線
與
交于
兩點,點
關(guān)于
軸的對稱點為
,證明直線
過定點,并求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
.
(1)求過點的
的切線方程;
(2)當(dāng)時,求函數(shù)
在
的最大值;
(3)證明:當(dāng)時,不等式
對任意
均成立(其中
為自然對數(shù)的底數(shù),
).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-5:不等式選講
設(shè)函數(shù)f(x)=e2x-aln x.
(1)討論f(x)的導(dǎo)函數(shù)f′(x)零點的個數(shù);
(2)證明:當(dāng)a>0時,f(x)≥2a+aln.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,圓的圓心坐標(biāo)為
,半徑為2.以極點為原點,極軸為
的正半軸,取相同的長度單位建立平面直角坐標(biāo)系,直線
的參數(shù)方程為
(
為參數(shù)).
(1)求圓的極坐標(biāo)方程;
(2)設(shè)與圓
的交點為
,
與
軸的交點為
,求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,四棱錐的側(cè)面
底面
,底面
是直角梯形,且
,
,
是
中點.
(1)求證: 平面
;
(2)若,求直線
與平面
所成角的大小.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com