【題目】在三棱柱中,底面
是正三角形,側棱
底面
.D,E分別是邊BC,AC的中點,線段
與
交于點G,且
,
.
(1)求證:∥平面
;
(2)求證:⊥平面
;
(3)求二面角的余弦值.
【答案】(1)見解析;(2)見解析;(3).
【解析】
(1)證明EG∥AB1.然后利用直線與平面平行的判定定理證明EG∥平面AB1D.
(2)取B1C1的中點D1,連接DD1.建立空間直角坐標系D-xyz,通過向量的數(shù)量積證明BC1⊥DA,BC1⊥DB1.然后證明BC1⊥平面AB1D.
(3)求出平面B1CB的一個法向量,平面AB1C的一個法向量,設二面角A-B1C-B的平面角為θ,利用空間向量的數(shù)量積求解二面角的余弦函數(shù)值即可.
(1)證明:因為E為AC中點,G為B1C中點.所以EG∥AB1.
又因為EG平面AB1D,AB1平面AB1D,
所以EG∥平面AB1D.
(2)證明:取B1C1的中點D1,連接DD1.
顯然DA,DC,DD1兩兩互相垂直,如圖,建立空間直角坐標系D-xyz,
則D(0,0,0),,B(0,-2,0),
,
,
,C(0,2,0).
所以,
,
.
又因為,
,
所以BC1⊥DA,BC1⊥DB1.
又因為DA∩DB1=D,所以BC1⊥平面AB1D.
(3)解:顯然平面B1CB的一個法向量為=(1,0,0).
設平面AB1C的一個法向量為:=(x,y,z),
又,
,
由得
設x=1,則,
,則
.
所以.
設二面角A-B1C-B的平面角為θ,由圖可知此二面角為銳二面角,
所以.
科目:高中數(shù)學 來源: 題型:
【題目】兩城市和
相距
,現(xiàn)計劃在兩城市外以
為直徑的半圓
上選擇一點
建造垃圾處理場,其對城市的影響度與所選地點到城市的距離有關,對城
和城
的總影響度為城
和城
的影響度之和,記
點到城
的距離為
,建在
處的垃圾處理場對城
和城
的總影響度為
,統(tǒng)計調查表明:垃圾處理場對城
的影響度與所選地點到城
的距離的平方成反比,比例系數(shù)為4,對城
的影響度與所選地點到城
的距離的平方成反比,比例系數(shù)為
,當垃圾處理場建在
的中點時,對城
和城
的總影響度為0.065;
(1)將表示成
的函數(shù);
(2)判斷上是否存在一點,使建在此處的垃圾處理場對城
和城
的總影響度最小?若存在,求出該點到城
的距離;若不存在,說明理由;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著改革開放的不斷深入,祖國不斷富強,人民的生活水平逐步提高,為了進一步改善民生,年
月
日起我國實施了個人所得稅的新政策,其政策的主要內容包括:(1)個稅起征點為
元;(2)每月應納稅所得額(含稅)
收入
個稅起征點
專項附加扣除;(3)專項附加扣除包括①贍養(yǎng)老人費用②子女教育費用③繼續(xù)教育費用④大病醫(yī)療費用
等,其中前兩項的扣除標準為:①贍養(yǎng)老人費用:每月扣除
元②子女教育費用:每個子女每月扣除
元
新個稅政策的稅率表部分內容如下:
級數(shù) | 一級 | 二級 | 三級 | 四級 | |
每月應納稅所得額(含稅) | 不超過 | 超過 | 超過 | 超過 | |
稅率 |
(1)現(xiàn)有李某月收入元,膝下有一名子女,需要贍養(yǎng)老人,(除此之外,無其它專項附加扣除)請問李某月應繳納的個稅金額為多少?
(2)現(xiàn)收集了某城市名年齡在
歲到
歲之間的公司白領的相關資料,通過整理資料可知,有一個孩子的有
人,沒有孩子的有
人,有一個孩子的人中有
人需要贍養(yǎng)老人,沒有孩子的人中有
人需要贍養(yǎng)老人,并且他們均不符合其它專項附加扣除(受統(tǒng)計的
人中,任何兩人均不在一個家庭).若他們的月收入均為
元,試求在新個稅政策下這
名公司白領的月平均繳納個稅金額為多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=2BC=2,點M為DC的中點,將△ADM沿AM折起,使得平面△ADM⊥平面ABCM.
(1)求證:AD⊥BM;
(2)求點C到平面BDM的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將紅、黑、藍、白5張紙牌(其中白紙牌有2張)隨機分發(fā)給甲、乙、丙、丁4個人,每人至少分得1張,則下列兩個事件為互斥事件的是( )
A. 事件“甲分得1張白牌”與事件“乙分得1張紅牌”
B. 事件“甲分得1張紅牌”與事件“乙分得1張藍牌”
C. 事件“甲分得1張白牌”與事件“乙分得2張白牌”
D. 事件“甲分得2張白牌”與事件“乙分得1張黑牌”
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2019年3月2日,昌平 “回天”地區(qū)開展了種不同類型的 “三月雷鋒月,回天有我”社會服務活動. 其中有
種活動既在上午開展、又在下午開展,
種活動只在上午開展,
種活動只在下午開展 . 小王參加了兩種不同的活動,且分別安排在上、下午,那么不同安排方案的種數(shù)是___________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地區(qū)實施“光盤行動”以后,某自助啤酒吧也制定了自己的行動計劃,進店的每一位客人需預交元,啤酒根據需要自己用量杯量取,結賬時,根據每桌剩余酒量,按一定倍率收費(如下表),每桌剩余酒量不足
升的,按
升計算(如剩余
升,記為剩余
升).例如:結賬時,某桌剩余酒量恰好為
升,則該桌的每位客人還應付
元.統(tǒng)計表明飲酒量與人數(shù)有很強的線性相關關系,下面是隨機采集的
組數(shù)據
(其中
表示飲酒人數(shù),
(升)表示飲酒量):
,
,
,
,
.
剩余酒量(單位:升) |
| ||||
結賬時的倍率 |
(1)求由這組數(shù)據得到的
關于
的回歸直線方程;
(2)小王約了位朋友坐在一桌飲酒,小王及朋友用量杯共量取了
升啤酒,這時,酒吧服務生對小王說,根據他的經驗,小王和朋友量取的啤酒可能喝不完,可以考慮再邀請
位或
位朋友一起來飲酒,會更劃算.試向小王是否該接受服務生的建議?
參考數(shù)據:回歸直線的方程是,其中
,
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在多面體中,四邊形
為矩形,
,
均為等邊三角形,
,
.
(1)過作截面與線段
交于點
,使得
平面
,試確定點
的位置,并予以證明;
(2)在(1)的條件下,求直線與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某銷售公司在當?shù)?/span>、
兩家超市各有一個銷售點,每日從同一家食品廠一次性購進一種食品,每件200元,統(tǒng)一零售價每件300元,兩家超市之間調配食品不計費用,若進貨不足食品廠以每件250元補貨,若銷售有剩余食品廠以每件150回收.現(xiàn)需決策每日購進食品數(shù)量,為此搜集并整理了
、
兩家超市往年同期各50天的該食品銷售記錄,得到如下數(shù)據:
銷售件數(shù) | 8 | 9 | 10 | 11 |
頻數(shù) | 20 | 40 | 20 | 20 |
以這些數(shù)據的頻數(shù)代替兩家超市的食品銷售件數(shù)的概率,記表示這兩家超市每日共銷售食品件數(shù),
表示銷售公司每日共需購進食品的件數(shù).
(1)求的分布列;
(2)以銷售食品利潤的期望為決策依據,在與
之中選其一,應選哪個?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com