如圖,在四棱錐中,底面
為直角梯形,且
,
,平面
底面
,
為
的中點(diǎn),
是棱
的中點(diǎn),
.
(Ⅰ)求證:平面
;
(Ⅱ)求三棱錐的體積.
(Ⅰ)詳見解析;(Ⅱ).
【解析】
試題分析:(Ⅰ)本小題是一個(gè)證明線面平行的題,一般借助線面平行的判定定理求解,連接,因?yàn)?/span>
,
,所以四邊形
為平行四邊形,連接
交
于
,連接
,則
,則根據(jù)線面平行的判定定理可知
平面
.
(Ⅱ)由于平面底面
,
,由面面垂直的性質(zhì)定理可知
底面
,
所以是三棱錐
的高,且
,又因?yàn)?/span>
可看成
和
差構(gòu)成,由(Ⅰ)知
是三棱錐
的高,
,
,可知
,又由于
,可知
.
試題解析:連接,因?yàn)?/span>
,
,所以四邊形
為平行四邊形
連接交
于
,連接
,則
,
又平面
,
平面
,所以
平面
.
(2),
由于平面底面
,
底面
所以是三棱錐
的高,且
由(1)知是三棱錐
的高,
,
,
所以,則
.
考點(diǎn):1.直線與平面平行的判定;2.錐體的體積公式.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2010-2011年廣西省桂林中學(xué)高二下學(xué)期期中考試數(shù)學(xué) 題型:解答題
((本小題滿分12分)
如圖,在四棱錐中,底面
是矩形.已知
.
(1)證明平面
;
(2)求異面直線與
所成的角的大;
(3)求二面角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012屆福建省三明市高三第一學(xué)期測試?yán)砜茢?shù)學(xué)試卷 題型:解答題
如圖,在四棱錐中,底面
是菱形,
,
,
,
平面
,
是
的中點(diǎn),
是
的中點(diǎn).
(Ⅰ) 求證:∥平面
;
(Ⅱ)求證:平面⊥平面
;
(Ⅲ)求平面與平面
所成的銳二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆上海市高二年級期終考試數(shù)學(xué) 題型:解答題
(本題滿分16分)
如圖,在四棱錐中,底面
是矩形.已知
.
(1)證明平面
;
(2)求異面直線與
所成的角的大;
(3)求二面角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年江蘇省高二下學(xué)期期末考試附加卷數(shù)學(xué)卷 題型:解答題
如圖,在四棱錐中,底面
是正方形,側(cè)棱
,
為
中點(diǎn),作
交
于
(1)求PF:FB的值
(2)求平面與平面
所成的銳二面角的正弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011屆浙江省高三6月考前沖刺卷數(shù)學(xué)理 題型:解答題
(本小題滿分14分)
如圖,在四棱錐中,底面
為平行四邊形,
平面
,
在棱
上.
(Ⅰ)當(dāng)時(shí),求證
平面
(Ⅱ)當(dāng)二面角的大小為
時(shí),求直線
與平面
所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com