【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,已知曲線
的極坐標(biāo)方程為
,過點(diǎn)
的直線
的參數(shù)方程為
(
為參數(shù)),直線
與曲線
相交于
兩點(diǎn).
(1)寫出曲線的直角坐標(biāo)方程和直線
的普通方程;
(2)若,求
的值.
【答案】(1)曲線,直線l的普通方程為
(2) 1
【解析】【試題分析】(1)對(duì)曲線的極坐標(biāo)方程兩邊乘以
,可求得其直角坐標(biāo)方程.利用加減消元法消去參數(shù)
,可求得直線的直角坐標(biāo)方程.(2)將直線的參數(shù)方程代入拋物線的方程,化簡(jiǎn)后寫出韋達(dá)定理,利用直線參數(shù)的幾何意義,結(jié)合
可求得
的值.
【試題解析】
(1)由=
整理得
=
,
∴曲線的直角坐標(biāo)方程為
=
,
直線的普通方程為=
(2)將直線的參數(shù)方程代入曲線的直角坐標(biāo)方程
=
中,
得,
設(shè)兩點(diǎn)對(duì)應(yīng)的參數(shù)分別為
,則有
=
=
,
∵=
,∴
=
即
=
∴=
即
,解得
或者
(舍去),
∴的值為1
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某小店每天以每份5元的價(jià)格從食品廠購(gòu)進(jìn)若干份食品,然后以每份10元的價(jià)格出售.如果當(dāng)天賣不完,剩下的食品還可以每份1元的價(jià)格退回食品廠處理.
(Ⅰ)若小店一天購(gòu)進(jìn)16份,求當(dāng)天的利潤(rùn)(單位:元)關(guān)于當(dāng)天需求量
(單位:份,
)的函數(shù)解析式;
(Ⅱ)小店記錄了100天這種食品的日需求量(單位:份),整理得下表:
日需求量 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
頻數(shù) | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率.
(i)小店一天購(gòu)進(jìn)16份這種食品,表示當(dāng)天的利潤(rùn)(單位:元),求
的分布列及數(shù)學(xué)期望;
(ii)以小店當(dāng)天利潤(rùn)的期望值為決策依據(jù),你認(rèn)為一天應(yīng)購(gòu)進(jìn)食品16份還是17份?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)有兩個(gè)極值點(diǎn)
,
,且
.
()求
的取值范圍,并討論
的單調(diào)性.
()證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知?jiǎng)狱c(diǎn)到定點(diǎn)
的距離比
到定直線
的距離小1.
(Ⅰ)求點(diǎn)的軌跡
的方程;
(Ⅱ)過點(diǎn)任意作互相垂直的兩條直線
,分別交曲線
于點(diǎn)
和
.設(shè)線段
,
的中點(diǎn)分別為
,求證:直線
恒過一個(gè)定點(diǎn);
(Ⅲ)在(Ⅱ)的條件下,求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓(
)的左、右焦點(diǎn)分別為
,
,過
作垂直于
軸的直線與橢圓
在第一象限交于點(diǎn)
,若
,且
.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知點(diǎn)關(guān)于
軸的對(duì)稱點(diǎn)
在拋物線
上,是否存在直線
與橢圓交于
,使得
的中點(diǎn)
落在直線
上,并且與拋物線
相切,若直線
存在,求出
的方程,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt中,
,點(diǎn)
、
分別在線段
、
上,且
,將
沿
折起到
的位置,使得二面角
的大小為
.
(1)求證:;
(2)當(dāng)點(diǎn)為線段
的靠近
點(diǎn)的三等分點(diǎn)時(shí),求
與平面
所成角
的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的
倍,且過點(diǎn)
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若的頂點(diǎn)
、
在橢圓上,
所在的直線斜率為
,
所在的直線斜率為
,若
,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn),點(diǎn)
是圓
上任意一點(diǎn),線段
的垂直平分線與半徑
交于
點(diǎn),當(dāng)點(diǎn)
在圓
上運(yùn)動(dòng)時(shí),
(1)求點(diǎn)的軌跡
的方程;
(2)過作直線
與曲線
相交于
兩點(diǎn),
為坐標(biāo)原點(diǎn),求
面積的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com