【答案】
分析:由圖象可知A=2,

,再根據(jù)周期公式可得:ω=2,因?yàn)閳D象過點(diǎn)(

,2),可得φ=2kπ+

,k∈z,再根據(jù)φ的范圍求出φ的值,進(jìn)而求出了函數(shù)的解析式得到答案.
解答:解:由圖象可知A=2,

所以T=π,所以ω=2,
所以y=3sin(2x+φ).
又因?yàn)閳D象過點(diǎn)(

,2),即sin(

+φ)=1,
所以解得φ=2kπ+

,k∈z
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102557865252147/SYS201311031025578652521010_DA/7.png">,
所以當(dāng)k=0時(shí),φ=

,
y的表達(dá)式為

.
故答案為:

.
點(diǎn)評(píng):解決此類問題的關(guān)鍵是求φ,首先根據(jù)函數(shù)的圖象得到A與ω,再根據(jù)最值點(diǎn)或者平衡點(diǎn)求出所有的φ,進(jìn)而根據(jù)φ的范圍求出答案即可,注意在代入已知點(diǎn)時(shí)最好代入最值點(diǎn),因?yàn)樵谝粋(gè)周期內(nèi)只有一個(gè)最大值,一個(gè)最小值,而平衡點(diǎn)卻有兩個(gè),假如代入的是平衡點(diǎn)則需要根據(jù)函數(shù)的單調(diào)性再來判定φ的取值.