【題目】在平面直角坐標(biāo)系xOy中,曲線的參數(shù)方程為
(
,
為參數(shù)),在以O為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線
是圓心在極軸上,且經(jīng)過極點(diǎn)的圓.已知曲線
上的點(diǎn)M
對應(yīng)的參數(shù)
,射線
與曲線
交于點(diǎn)
.
(1)求曲線,
的直角坐標(biāo)方程;
(2)若點(diǎn)A,B為曲線上的兩個(gè)點(diǎn)且
,求
的值.
【答案】(1).
.(2)
【解析】
(1)先求解a,b,消去參數(shù),即得曲線
的直角坐標(biāo)方程;再求解
,利用極坐標(biāo)和直角坐標(biāo)的互化公式,即得曲線
的直角坐標(biāo)方程;
(2)由于,可設(shè)
,
,代入曲線
直角坐標(biāo)方程,可得
的關(guān)系,轉(zhuǎn)化
,可得解.
(1)將及對應(yīng)的參數(shù)
,代入
得,即
,
所以曲線的方程為
,
為參數(shù),
所以曲線的直角坐標(biāo)方程為
.
設(shè)圓的半徑為R,由題意,圓
的極坐標(biāo)方程為
(或
),
將點(diǎn)代入
,得
,即
,
所以曲線的極坐標(biāo)方程為
,
所以曲線的直角坐標(biāo)方程為
.
(2)由于,故可設(shè)
,
代入曲線直角坐標(biāo)方程,
可得,
,
所以
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:
的離心率為
,直線
交橢圓
于
、
兩點(diǎn),橢圓
的右頂點(diǎn)為
,且滿足
.
(1)求橢圓的方程;
(2)若直線與橢圓
交于不同兩點(diǎn)
、
,且定點(diǎn)
滿足
,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知函數(shù),
,
.
(1)求函數(shù)的零點(diǎn)個(gè)數(shù);
(2)若對任意
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】冠狀病毒是一個(gè)大型病毒家族,己知可引起感冒以及中東呼吸綜合征()和嚴(yán)重急性呼吸綜合征(
)等較嚴(yán)重疾病.而今年出現(xiàn)在湖北武漢的新型冠狀病毒(
)是以前從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株.人感染了新型冠狀病毒后常見體征有呼吸道癥狀、發(fā)熱、咳嗽、氣促和呼吸困難等.在較嚴(yán)重病例中,感染可導(dǎo)致肺炎、嚴(yán)重急性呼吸綜合征、腎衰竭,甚至死亡.
某醫(yī)院為篩查冠狀病毒,需要檢驗(yàn)血液是否為陽性,現(xiàn)有n()份血液樣本,有以下兩種檢驗(yàn)方式:
方式一:逐份檢驗(yàn),則需要檢驗(yàn)n次.
方式二:混合檢驗(yàn),將其中k(且
)份血液樣本分別取樣混合在一起檢驗(yàn).
若檢驗(yàn)結(jié)果為陰性,這k份的血液全為陰性,因而這k份血液樣本只要檢驗(yàn)一次就夠了,如果檢驗(yàn)結(jié)果為陽性,為了明確這k份血液究竟哪幾份為陽性,就要對這k份再逐份檢驗(yàn),此時(shí)這k份血液的檢驗(yàn)次數(shù)總共為.
假設(shè)在接受檢驗(yàn)的血液樣本中,每份樣本的檢驗(yàn)結(jié)果是陽性還是陰性都是獨(dú)立的,且每份樣本是陽性結(jié)果的概率為p().現(xiàn)取其中k(
且
)份血液樣本,記采用逐份檢驗(yàn)方式,樣本需要檢驗(yàn)的總次數(shù)為
,采用混合檢驗(yàn)方式,樣本需要檢驗(yàn)的總次數(shù)為
.
(1)若,試求p關(guān)于k的函數(shù)關(guān)系式
;
(2)若p與干擾素計(jì)量相關(guān),其中
(
)是不同的正實(shí)數(shù),
滿足且
(
)都有
成立.
(i)求證:數(shù)列等比數(shù)列;
(ii)當(dāng)時(shí),采用混合檢驗(yàn)方式可以使得樣本需要檢驗(yàn)的總次數(shù)的期望值比逐份檢驗(yàn)的總次數(shù)的期望值更少,求k的最大值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,三棱柱中,
平面
,點(diǎn)
,
分別在線段
,
上,且
,
,
是線段
的中點(diǎn).
(Ⅰ)求證:平面
;
(Ⅱ)若,
,
,求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,cosB=.
(Ⅰ)若c=2a,求的值;
(Ⅱ)若C-B=,求sinA的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中
.
(Ⅰ)若,求函數(shù)
的極值;
(Ⅱ)設(shè).若
在
上恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD的底面是梯形.BC∥AD,AB=BC=CD=1,AD=2,,
(Ⅰ)證明;AC⊥BP;
(Ⅱ)求直線AD與平面APC所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com