已知橢圓長軸的左右端點分別為A,B,短軸的上端點為M,O為橢圓的中心,F(xiàn)為橢圓的右焦點,且·
=1,|
|=1.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)若直線l交橢圓于P,Q兩點,問:是否存在直線l,使得點F恰為△PQM的垂心?若存在,求出直線l的方程;若不存在,請說明理由.
(Ⅰ)橢圓方程為;(Ⅱ)滿足題意的直線存在,方程為:
.
解析試題分析:(Ⅰ)求橢圓的標準方程,可采用待定系數(shù)法求方程, 設(shè)橢圓方程為,利用條件求
的值,從而得方程,因為|
|=1,即
,再由
·
=1,寫出
,
的坐標,從而求出
的值,可得方程;(Ⅱ)此題屬于探索性命題,解此類問題,一般都假設(shè)成立,作為條件,能求出值,則成立,若求不出值,或得到矛盾的結(jié)論,則不存在,此題假設(shè)存在直線
符合題意,設(shè)出直線方程,根據(jù)直線與二次曲線位置關(guān)系的解題方法,采用設(shè)而不求的解題思維,設(shè)
的坐標,根據(jù)根與系數(shù)關(guān)系,來求出直線方程,值得注意的是,當方程不恒有交點時,需用判別式討論參數(shù)的取值范圍.
試題解析:(Ⅰ)設(shè)橢圓方程為,
,所以
,又因為
,所以
,則橢圓方程為
;
(Ⅱ)假設(shè)存在直線符合題意。由題意可設(shè)直線
方程為:
,代入
得:
,
,設(shè)
,則
,
,
解得:
或
, 當
時,
三點共線,所以
,所以
,所以滿足題意的直線存在,方程為:
.
考點:本題考查橢圓的方程,直線與橢圓的位置關(guān)系,考查學(xué)生的運算能力、化簡能力以及數(shù)形結(jié)合的能力.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知三點P(5,2)、F1(-6,0)、F2(6,0)。
(1)求以F1、F2為焦點且過點P的橢圓的標準方程;
(2)設(shè)點P、F1、F2關(guān)于直線y=x的對稱點分別為,求以
為焦點且過
點的雙曲線的標準方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知是拋物線
上的點,
是
的焦點, 以
為直徑的圓
與
軸的另一個交點為
.
(Ⅰ)求與
的方程;
(Ⅱ)過點且斜率大于零的直線
與拋物線
交于
兩點,
為坐標原點,
的面積為
,證明:直線
與圓
相切.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C的中心在原點,焦點F在軸上,離心率
,點
在橢圓C上.
(1)求橢圓的標準方程;
(2)若斜率為的直線
交橢圓
與
、
兩點,且
、
、
成等差數(shù)列,點M(1,1),求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知雙曲線(a>0,b>0)的離心率
,過點A(0,-b)和B(a,0)的直線與原點的距離是
.
(Ⅰ)求雙曲線的方程及漸近線方程;
(Ⅱ)若直線y=kx+5 (k≠0)與雙曲線交于不同的兩點C、D,且兩點都在以A為圓心的同一個圓上,求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
拋物線M: 的準線過橢圓N:
的左焦點,以坐標原點為圓心,以t(t>0)為半徑的圓分別與拋物線M在第一象限的部分以及y軸的正半軸相交于點A與點B,直線AB與x軸相交于點C.
(1)求拋物線M的方程.
(2)設(shè)點A的橫坐標為x1,點C的橫坐標為x2,曲線M上點D的橫坐標為x1+2,求直線CD的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知點,
是拋物線
上相異兩點,且滿足
.
(Ⅰ)若的中垂線經(jīng)過點
,求直線
的方程;
(Ⅱ)若的中垂線交
軸于點
,求
的面積的最大值及此時直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓:
的長軸長為4,且過點
.
(1)求橢圓的方程;
(2)設(shè)、
、
是橢圓上的三點,若
,點
為線段
的中點,
、
兩點的坐標分別為
、
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
以直角坐標系的原點O為極點,x軸的正半軸為極軸,且兩個坐標系取相等的長度單位.已知直線的參數(shù)方程為
(t為參數(shù),0<a<
),曲線C的極坐標方程為
.
(1)求曲線C的直角坐標方程;
(2)設(shè)直線l與曲線C相交于A、B兩點,當a變化時,求|AB|的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com