【題目】數(shù)列{an}的前n項和為Sn,且Sn=n(n+1)(n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足:,求數(shù)列{bn}的通項公式;
(3)令(n∈N*),求數(shù)列{cn}的前n項和Tn.
【答案】(1) ;(2)
;(3)
.
【解析】
(1)數(shù)列{an}的前n項和為Sn,且Sn=n(n+1)(n∈N*),n≥2時,an=Sn﹣Sn﹣1.n=1時,a1=S1=2,即可得出;(2)數(shù)列{bn}滿足:an=,可得n≥2時,an﹣an﹣1=
=2.n=1時,
=a1=2,可得b1;(3)cn=
=
=n3n+n,令數(shù)列{n3n}的前n項和為An,利用錯位相減法即可得出An.進而得出數(shù)列{cn}的前n項和Tn.
(1)∵數(shù)列{an}的前n項和為Sn,且Sn=n(n+1)(n∈N*),
∴n≥2時,an=Sn﹣Sn﹣1=n(n+1)﹣n(n﹣1)=2n.
n=1時,a1=S1=2,對于上式也成立.
∴an=2n.
(2)數(shù)列{bn}滿足:an=+
+
+…+
,∴n≥2時,an﹣an﹣1=
=2.
∴bn=2(3n+1).
n=1時,=a1=2,可得b1=8,對于上式也成立.
∴bn=2(3n+1).
(3)cn==
=n3n+n,
令數(shù)列{n3n}的前n項和為An,則An=3+2×32+3×33+…+n3n,
∴3An=32+2×33+…+(n﹣1)3n+n3n+1,
∴﹣2An=3+32+…+3n﹣n3n+1=﹣n3n+1,
可得An=.
∴數(shù)列{cn}的前n項和Tn=+
.
科目:高中數(shù)學 來源: 題型:
【題目】對于函數(shù),若在定義域內(nèi)存在實數(shù)
,滿足
,則稱
為“局部奇函數(shù)”.
(1)已知二次函數(shù),試判斷
是否為“局部奇函數(shù)”?并說明理由;
(2)若是定義在區(qū)間
上的“局部奇函數(shù)”,求實數(shù)
的取值范圍;
(3)若為定義域
上的“局部奇函數(shù)”,求實數(shù)
的取值范圍;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左右焦點分別為
,離心率為
,點
在橢圓
上,且
的周長為
.
(1)求橢圓的方程;
(2)已知過點的直線與橢圓
交于
兩點,點
在直線
上,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,
,…,
是由
(
)個整數(shù)
,
,…,
按任意次序排列而成的數(shù)列,數(shù)列
滿足
(
),
,
,…,
是
,
,…,
按從大到小的順序排列而成的數(shù)列,記
.
(1)證明:當為正偶數(shù)時,不存在滿足
(
)的數(shù)列
.
(2)寫出(
),并用含
的式子表示
.
(3)利用,證明:
及
.(參考:
.)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有次水下考古活動中,潛水員需潛入水深為30米的水底進行作業(yè),其用氧量包含以下三個方面:①下潛時,平均速度為每分鐘米,每分鐘的用氧量為
升;②水底作業(yè)需要10分鐘,每分鐘的用氧量為0.3升;③返回水面時,速度為每分鐘
米,每分鐘用氧量為0.2升;設潛水員在此次考古活動中的總用氧量為
升;
(1)將表示為
的函數(shù);
(2)若,求總用氧量
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,
平面
,底面
是直角梯形,其中
,
,
,
,
為棱
上的點,且
.
(1)求證:平面
;
(2)求二面角的余弦值;
(3)設為棱
上的點(不與
,
重合),且直線
與平面
所成角的正弦值為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓長軸長為短軸長的兩倍,連結橢圓的四個頂點得到的菱形的面積為4,直線
過點
,且與橢圓相交于另一點
.
(1)求橢圓的方程;
(2)若線段長為
,求直線
的傾斜角;
(3)點在線段
的垂直平分線上,且
,求
的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com