【題目】已知函數(shù)
(1)若,求
的極值;
(2)若,都有
成立,求k的取值范圍.
【答案】(1)極小值為,無極大值;(2)
.
【解析】
(1)先求導,再根據(jù)導數(shù)和函數(shù)單調性的關系即可求出單調區(qū)間;
(2)求出函數(shù)的導數(shù),通過討論的取值范圍,求出函數(shù)的單調區(qū)間,求出函數(shù)的最小值,根據(jù)
,求出
的取值范圍即可.
(1)時,
,
,令
,解得
,
∴時,函數(shù)
取得極小值,
;無極大值;
(2),
①當時,
,
所以,當時,
,當
時,
,
則在區(qū)間
上是減函數(shù),在區(qū)間
上是增函數(shù),
所以在區(qū)間
上的最小值為
,且
,符合題意;
②當時,令
,得
或
,
所以,當時,
,在區(qū)間
上
,
為增函數(shù),
所以在區(qū)間
上的的最小值為
,且
,符合題意;
當時,
,
當時,
,
在區(qū)間
上是減函數(shù),
所以,不滿足對任意的
,
恒成立,
綜上,的取值范圍是
.
科目:高中數(shù)學 來源: 題型:
【題目】某工廠打算設計一種容積為2m3的密閉容器用于貯藏原料,容器的形狀是如圖所示的直四棱柱,其底面是邊長為x米的正方形,假設該容器的底面及側壁的厚度均可忽略不計.
(1)請你確定x的值,使得該容器的外表面積最小;
(2)若該容器全部由某種每平方米價格為100元的材料做成,且制作該容器僅需將購置的材料做成符合需要的矩形,這些矩形即是直四棱柱形容器的上下底面和側面(假設這一過程中產生的費用和材料損耗可忽略不計),再將這些上下底面和側面的邊緣進行焊接即可做成該容器,焊接費用是每米500元,試確定x的值,使得生產每個該種容器的成本(即原料購置成本+焊接費用)最低.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某大型歌手選秀活動,過程分為初賽、復賽和決賽.經初賽進入復賽的40名選手被平均分成甲、乙兩個班,由組委會聘請兩位導師各負責一個班進行聲樂培訓.下圖是根據(jù)這40名選手參加復賽時獲得的100名大眾評審的支持票數(shù)制成的莖葉圖.賽制規(guī)定:參加復賽的40名選手中,獲得的支持票數(shù)不低于85票的可進入決賽,其中票數(shù)不低于95票的選手在決賽時擁有“優(yōu)先挑戰(zhàn)權”.
(1)從進入決賽的選手中隨機抽出2名,X表示其中擁有“優(yōu)先挑戰(zhàn)權”的人數(shù),求X的分布列和數(shù)學期望;
(2)請?zhí)顚懴旅娴?/span>列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.025的前提下認為進入決賽與選擇的導師有關?
甲班 | 乙班 | 合計 | |
進入決賽 | |||
未進入決賽 | |||
合計 |
下面的臨界值表僅供參考:
P( | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中
)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖1所示,在等腰梯形ABCD中,,
,垂足為E,
,
將
沿EC折起到
的位置,如圖2所示,使平面
平面ABCE.
(1)連結BE,證明:平面
;
(2)在棱上是否存在點G,使得
平面
,若存在,直接指出點G的位置
不必說明理由
,并求出此時三棱錐
的體積;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知命題;命題
函數(shù)
在區(qū)間
上有零點.
(1)當時,若
為真命題,求實數(shù)
的取值范圍;
(2)若命題是命題
的充分不必要條件,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ex﹣2mx﹣n(0<x<1),其中m,n∈R,e為自然對數(shù)的底數(shù).
(1)試討論函數(shù)f(x)的極值;
(2)記函數(shù)g(x)=ex﹣mx2﹣nx﹣1(0<x<1),且g(x)的圖象在點處的切的斜率為
,若函數(shù)g(x)存在零點,試求實數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com