【題目】我國正逐漸進(jìn)入老齡化社會,老有所依也是政府的民生工程.某市共有戶籍人口400萬,其中老人(年齡60歲及以上)人數(shù)約有66萬,為了解老人們的健康狀況,政府從老人中隨機(jī)抽取600人并委托醫(yī)療機(jī)構(gòu)免費(fèi)為他們進(jìn)行健康評估,健康狀況共分為不能自理、不健康尚能自理、基本健康、健康四個等級,并以80歲為界限分成兩個群體進(jìn)行統(tǒng)計,樣本分布被制作成如下圖表:
據(jù)統(tǒng)計,該市大約有五分之一的戶籍老人無固定收入,政府計劃為這部分老人每月發(fā)放生活補(bǔ)貼,標(biāo)準(zhǔn)如下:
①80歲及以上長者每人每月發(fā)放生活補(bǔ)貼300元;
②80歲以下老人每人每月發(fā)放生活補(bǔ)貼200元;
③不能自理的老人每人每月額外發(fā)放生活補(bǔ)貼100元.
則政府執(zhí)行此計劃的年度預(yù)算為 ___________萬元.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)的對稱美在中國傳統(tǒng)文化中多有體現(xiàn),譬如如圖所示的太極圖是由黑白兩個魚形紋組成的圓形圖案,充分展現(xiàn)了相互轉(zhuǎn)化、對稱統(tǒng)一的和諧美.如果能夠?qū)A的周長和面積同時平分的函數(shù)稱為這個圓的“優(yōu)美函數(shù)“,下列說法錯誤的是( )
A.對于任意一個圓,其“優(yōu)美函數(shù)“有無數(shù)個
B.可以是某個圓的“優(yōu)美函數(shù)”
C.正弦函數(shù)可以同時是無數(shù)個圓的“優(yōu)美函數(shù)”
D.函數(shù)是“優(yōu)美函數(shù)”的充要條件為函數(shù)
的圖象是中心對稱圖形
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(
,
是自然對數(shù)的底數(shù))
(Ⅰ) 設(shè)(其中
是
的導(dǎo)數(shù)),求
的極小值;
(Ⅱ) 若對,都有
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以原點(diǎn)
為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系.若曲線
的極坐標(biāo)方程為
,
點(diǎn)的極坐標(biāo)為
,在平面直角坐標(biāo)系中直線
經(jīng)過點(diǎn)
,且傾斜角為
.
(1)寫出曲線的直角坐標(biāo)方程以及點(diǎn)
的直角坐標(biāo);
(2)設(shè)直線與曲線相交于
、
兩點(diǎn),求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線:
與拋物線
切于點(diǎn)
,直線
:
過定點(diǎn)Q,且拋物線
上的點(diǎn)到點(diǎn)Q的距離與其到準(zhǔn)線距離之和的最小值為
.
(1)求拋物線的方程及點(diǎn)
的坐標(biāo);
(2)設(shè)直線與拋物線
交于(異于點(diǎn)P)兩個不同的點(diǎn)A、B,直線PA,PB的斜率分別為
,那么是否存在實(shí)數(shù)
,使得
?若存在,求出
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知直線
經(jīng)過點(diǎn)
,傾斜角
,在極坐標(biāo)系(與直角坐標(biāo)系
取相同的長度單位,以原點(diǎn)
為極點(diǎn),以
軸正半軸為極軸)中,圓
的極坐標(biāo)方程為
.
(1)寫出直線的參數(shù)方程,并把圓
的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)設(shè)與圓
相交于
、
兩點(diǎn),求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,平面PCD,
,
,
,E為AD的中點(diǎn),AC與BE相交于點(diǎn)O.
(1)證明:平面ABCD.
(2)求直線BC與平面PBD所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面四邊形中,
,
是
上的一點(diǎn),
是
的中點(diǎn),以
為折痕把
折起,使點(diǎn)
到達(dá)點(diǎn)
的位置,且
.
(1)證明:平面平面
;
(2)求直線與平面
所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com