【題目】下列說法中正確的是( )
A.對具有線性相關關系的變量有一組觀測數據
,其線性回歸方程是
,且
,則實數
的值是
B.正態(tài)分布在區(qū)間
和
上取值的概率相等
C.若兩個隨機變量的線性相關性越強,則相關系數的值越接近于1
D.若一組數據的平均數是2,則這組數據的眾數和中位數都是2
科目:高中數學 來源: 題型:
【題目】已知動圓過定點,且與定直線
相切.
(1)求動圓圓心的軌跡的方程;
(2)若是軌跡
的動弦,且
過
, 分別以
、
為切點作軌跡
的切線,設兩切線交點為
,證明:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知動圓過定點,且與定直線
相切.
(1)求動圓圓心的軌跡的方程;
(2)若是軌跡
的動弦,且
過
, 分別以
、
為切點作軌跡
的切線,設兩切線交點為
,證明:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某研究所計劃利用“神七”宇宙飛船進行新產品搭載實驗,計劃搭載新產品A、B,要根據該產品的研制成本、產品重量、搭載實驗費用和預計產生收益來決定具體安排,通過調查,有關數據如表:
產品A(件) | 產品B(件) | ||
研制成本與塔載 | 20 | 30 | 計劃最大資 |
產品重量(千克/件) | 10 | 5 | 最大搭載 |
預計收益(萬元/件) | 80 | 60 |
試問:如何安排這兩種產品的件數進行搭載,才能使總預計收益達到最大,最大收益是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】《山東省高考改革試點方案》規(guī)定:從2017年秋季高中入學的新生開始,不分文理科;2020年高考總成績由語數外三門統考科目和物理、化學等六門選考科目組成,將每門選考科目的考生原始成績從高到低劃分為、
、
、
共8個等級,參照正態(tài)分布原則,確定各等級人數所占比例分別為3%、7%、16%、24%、24%、16%、7%、3%,選考科目成績計入考生總成績時,將A至E等級內的考生原始成績,依照等比例轉換法則,分別轉換到
、
、
、
、
、
、
,
八個分數區(qū)間,得到考生的等級成績.某市高一學生共6000人,為給高一學生合理選科提供依據,對六門選考科目進行測試,其中化學考試原始成績
大致服從正態(tài)分布
.
(1)求該市化學原始成績在區(qū)間的人數;
(2)以各等級人數所占比例作為各分數區(qū)間發(fā)生的概率,按高考改革方案,若從全省考生中隨機抽取3人,記X表示這3人中等級成績在區(qū)間的人數,求
.
(附:若隨機變量,則
,
,
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某次數學測驗共有12道選擇題,每道題共有四個選項,且其中只有一個選項是正確的,評分標準規(guī)定:每選對1道題得5分,不選或選錯得0分. 在這次數學測驗中,考生甲每道選擇題都按照規(guī)則作答,并能確定其中有9道題能選對;其余3道題無法確定正確選項,在這3道題中,恰有2道能排除兩個錯誤選項,另1題只能排除一個錯誤選項. 若考生甲做這3道題時,每道題都從不能排除的選項中隨機挑選一個選項作答,且各題作答互不影響.在本次測驗中,考生甲選擇題所得的分數記為
(1)求的概率;
(2)求的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司為了鼓勵運動提高所有用戶的身體素質,特推出一款運動計步數的軟件,所有用戶都可以通過每天累計的步數瓜分紅包,大大增加了用戶走步的積極性,所以該軟件深受廣大用戶的歡迎.該公司為了研究“日平均走步數和性別是否有關”,統計了2019年1月份所有用戶的日平均步數,規(guī)定日平均步數不少于8000的為“運動達人”,步數在8000以下的為“非運動達人”,采用按性別分層抽樣的方式抽取了100個用戶,得到如下列聯表:
運動達人 | 非運動達人 | 總計 | |
男 | 35 | 60 | |
女 | 26 | ||
總計 | 100 |
(1)(i)將列聯表補充完整;
(ii)據此列聯表判斷,能否有的把握認為“日平均走步數和性別是否有關”?
(2)從樣本中的運動達人中抽取7人參加“幸運抽獎”活動,通過抽獎共產生2位幸運用戶,求這2位幸運用戶恰好男用戶和女用戶各一位的概率.
附:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓
的右頂點
,離心率為
,
為坐標原點.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知(異于點
)為橢圓
上一個動點,過
作線段
的垂線
交橢圓
于點
,求
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com