【題目】如圖,在三棱錐中,頂點
在底面
上的射影
在棱
上,
,
,
,
為
的中點。
(Ⅰ)求證:
(Ⅱ)求二面角的余弦值;
(Ⅲ)已知是平面
內(nèi)一點,點
為
中點,且
平面
,求線段
的長。
【答案】(Ⅰ)見解析;
(Ⅱ);
(Ⅲ).
【解析】
(Ⅰ)由題意利用線面垂直的判定定理即可證得題中的結(jié)論;
(Ⅱ)建立空間直角坐標系,求得半平面的法向量,利用法向量計算余弦值即可;
(Ⅲ)利用空間向量求得點Q的坐標,然后結(jié)合點P的坐標可得線段的長.
(Ⅰ)∵頂點在底面
上的射影
在棱
上,
∴平面平面
,
∵,∴
,
∵平面平面
,∴
平面
,
面
,∴
,
由,
,得
,∴
,
∵,∴
平面
.
(Ⅱ)連結(jié),分別以
、
、
為
軸,
軸,
軸,建立空間直角坐標系,
,
,
,
,
,
,
,
,
,
設(shè)為平面
的一個法向量,則
,
取,得
,
,
,
設(shè)平面的法向量
,則
,
取,則
,
設(shè)二面角的平面角為
,則
.
∴二面角的余弦值為
.
(Ⅲ)設(shè),
,
因為平面
,所以
所以,
,所以
.
科目:高中數(shù)學 來源: 題型:
【題目】已知是等差數(shù)列,滿足
,
,數(shù)列
滿足
,
,且
是等比數(shù)列.
(1)求數(shù)列和
的通項公式;
(2)求數(shù)列的前
項和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】鳳鳴山中學的高中女生體重 (單位:kg)與身高
(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)
(
),用最小二乘法近似得到回歸直線方程為
,則下列結(jié)論中不正確的是( )
A.與
具有正線性相關(guān)關(guān)系
B.回歸直線過樣本的中心點
C.若該中學某高中女生身高增加1cm,則其體重約增加0.85kg
D.若該中學某高中女生身高為160cm,則可斷定其體重必為50.29kg.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某機構(gòu)組織語文、數(shù)學學科能力競賽,按照一定比例淘汰后,頒發(fā)一二三等獎.現(xiàn)有某考場的兩科考試成績數(shù)據(jù)統(tǒng)計如下圖所示,其中數(shù)學科目成績?yōu)槎泉劦目忌?/span>人.
(Ⅰ)求該考場考生中語文成績?yōu)橐坏泉劦娜藬?shù);
(Ⅱ)用隨機抽樣的方法從獲得數(shù)學和語文二等獎的學生中各抽取人,進行綜合素質(zhì)測試,將他們的綜合得分繪成莖葉圖,求樣本的平均數(shù)及方差并進行比較分析;
(Ⅲ)已知本考場的所有考生中,恰有人兩科成績均為一等獎,在至少一科成績?yōu)橐坏泉劦目忌,隨機抽取
人進行訪談,求兩人兩科成績均為一等獎的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知、
是異面直線,給出下列結(jié)論:
①一定存在平面,使直線
平面
,直線
平面
;
②一定存在平面,使直線
平面
,直線
平面
;
③一定存在無數(shù)個平面,使直線
與平面
交于一個定點,且直線
平面
.
則所有正確結(jié)論的序號為( )
A.①②B.②C.②③D.③
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的兩個焦點與短軸的一個端點是等邊三角形的三個頂點,且長軸長為4.
求橢圓E的方程;
若A是橢圓E的左頂點,經(jīng)過左焦點F的直線l與橢圓E交于C,D兩點,求
與
為坐標原點
的面積之差絕對值的最大值.
已知橢圓E上點
處的切線方程為
,T為切點
若P是直線
上任意一點,從P向橢圓E作切線,切點分別為N,M,求證:直線MN恒過定點,并求出該定點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左頂點為
,右焦點為
,過
作垂直于
軸的直線交該橢圓于
,
兩點,直線
的斜率為
.
(Ⅰ)求橢圓的離心率;
(Ⅱ)若的外接圓在
處的切線與橢圓交另一點于
,且
的面積為
,求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)當時,方程
在區(qū)間
內(nèi)有唯一實數(shù)解,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,以
為極點,
軸的正半軸為極軸,建立極坐標系,曲線
的極坐標方程為
;直線
的參數(shù)方程為
(
為參數(shù)),直線
與曲線
分別交于
,
兩點.
(1)寫出曲線的直角坐標方程和直線
的普通方程;
(2)若點的極坐標為
,
,求
的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com