【題目】已知函數(shù).
(1)若在
上的最大值為
,求實數(shù)
的值;
(2)若對任意,都有
恒成立,求實數(shù)
的取值范圍;
(3)在(1)的條件下,設(shè),對任意給定的正實數(shù)
,曲線
上是否存在兩點(diǎn)
、
,使得
是以
(
為坐標(biāo)原點(diǎn))為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在
軸上?請說明理由。
【答案】(1)(2)
(3)對任意給定的正實數(shù)
,曲線
上總存在兩點(diǎn)
,使得
是以
(
為坐標(biāo)原點(diǎn))為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在
軸上
【解析】
試題分析:(1)由,得
,
令,得
或
.
列表如下:
0 | ||||||
0 | 0 | |||||
極小值 | 極大值 |
∵,
,
,
即最大值為,
. 4分
(2)由,得
.
,且等號不能同時取,
,
恒成立,即
.
令,求導(dǎo)得,
,
當(dāng)時,
,從而
,
在
上為增函數(shù),
,
. 8分
(3)由條件,,
假設(shè)曲線上存在兩點(diǎn)
滿足題意,則
只能在
軸兩側(cè),
不妨設(shè),則
,且
.
是以
(
為坐標(biāo)原點(diǎn))為直角頂點(diǎn)的直角三角形,
,
, 10分
是否存在等價于方程
在
且
時是否有解.
①若時,方程
為
,化簡得
,
此方程無解; 11分
②若時,
方程為
,即
,
設(shè),則
,
顯然,當(dāng)時,
,即
在
上為增函數(shù),
的值域為
,即
,
當(dāng)
時,方程
總有解.
對任意給定的正實數(shù)
,曲線
上總存在兩點(diǎn)
,使得
是以
(
為坐標(biāo)原點(diǎn))為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在
軸上. 14分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用二分法研究函數(shù)f(x)=x3+3x﹣1的零點(diǎn)時,第一次經(jīng)計算f(0)<0,f(0.5)>0,可得其中一個零點(diǎn)x0∈ ,第二次應(yīng)計算的f(x)的值為f( ).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)國務(wù)院批復(fù)同意,鄭州成功入圍國家中心城市,某校學(xué)生團(tuán)針對“鄭州的發(fā)展環(huán)境”對20名學(xué)生進(jìn)行問卷調(diào)查打分(滿分100分),得到如圖1所示莖葉圖.
(1)分別計算男生女生打分的平均分,并用數(shù)學(xué)特征評價男女生打分的數(shù)據(jù)分布情況;
(2)如圖2按照打分區(qū)間繪制的直方圖中,求最高矩形的高;
(3)從打分在70分以下(不含70分)的同學(xué)中抽取3人,求有女生被抽中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,若Ω是長方體ABCD﹣A1B1C1D1被平面EFGH截去幾何體EFGHB1C1后得到的幾何體,其中E為線段A1B1上異于B1的點(diǎn),F(xiàn)為線段BB1上異于B1的點(diǎn),且EH∥A1D1 , 則下列結(jié)論中不正確的是( 。
A.EH∥FG
B.四邊形EFGH是矩形
C.Ω是棱柱
D.Ω是棱臺
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方體ABCD﹣A1B1C1D1中,M、N分別為棱C1D1、C1C的中點(diǎn),有以下四個結(jié)論:
①直線AM與CC1是相交直線;
②直線AM與BN是平行直線;
③直線BN與MB1是異面直線;
④直線AM與DD1是異面直線.
其中正確的結(jié)論為 (注:把你認(rèn)為正確的結(jié)論的序號都填上).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為正方形,PD⊥平面ABCD,PD=AB,E,F(xiàn),G,H分別為PC、PD、BC、PA的中點(diǎn).
求證:(1)PA∥平面EFG;
(2)DH⊥平面EFG.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,分別是橢圓
的左、右焦點(diǎn).
(1)若點(diǎn)是第一象限內(nèi)橢圓上的一點(diǎn),
,求點(diǎn)
的坐標(biāo);
(2)設(shè)過定點(diǎn)的直線
與橢圓交于不同的兩點(diǎn)
,且
為銳角(其中
為坐標(biāo)原點(diǎn)),求直線
的斜率
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】矩形的兩條對角線相交于點(diǎn)
,
邊所在的直線的方程為
,點(diǎn)
在邊
所在的直線上.
(1)求邊所在直線的方程;
(2)求矩形外接圓的方程;
(3)過點(diǎn)的直線
被矩形
的外接圓截得的弦長為
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C經(jīng)過點(diǎn),且圓心
在直線
上,又直線
與圓C交于P,Q兩點(diǎn).
(1)求圓C的方程;
(2)若,求實數(shù)
的值;
(3)過點(diǎn)作直線
,且
交圓C于M,N兩點(diǎn),求四邊形
的面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com