【題目】如圖,平面平面
,四邊形
為菱形,四邊形
為矩形,
,
分別是
,
的中點(diǎn),
,
.
(Ⅰ)求證: 平面
;
(Ⅱ)若三棱錐的體積為
,求
的長.
【答案】(1)詳見解析;(2).
【解析】試題分析:(1)連接利用菱形的幾何性質(zhì)可知
,根據(jù)面面垂直的性質(zhì)定理可知
平面
,故
,在矩形
中,
,
是
中點(diǎn),故
,由此證得
平面
.(2)設(shè)
,則
,
,由此得到三角形
的面積.利用等體積法可求得
的值,從而得到
的值.
試題解析:
(1)證明:連接,在菱形
中,
,且
,
∴為等邊三角形,又∵
為
的中點(diǎn),∴
,
∵,∴
,
又∵平面平面
,∴
平面
∴平面
,又
平面
,∴
,
∵在矩形中,
為
的中點(diǎn),
∴為等腰直角三角形,∴
,
同理可證:∴,∴
,∴
,
又∵,且
平面
,
∴平面
(2)設(shè),則
,
在中,
,
,
∴
∴
∵平面平面
,
為交線,
,
∴平面
,
設(shè)為點(diǎn)
到平面
的距離,則
,
∴
∵,∴
所以
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為
,且過點(diǎn)
.
(1)求的方程;
(2)是否存在直線與
相交于
兩點(diǎn),且滿足:①
與
(
為坐標(biāo)原點(diǎn))的斜率之和為2;②直線
與圓
相切,若存在,求出
的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)m,n是兩條不同的直線,α,β是兩個(gè)不重合的平面,給定下列四個(gè)命題,其中為真命題的是( ) ① ;②
;
③ ;④
.
A.①和②
B.②和③
C.③和④
D.①和④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線x2=2py(p>0)與直線2x﹣y+1=0交于A,B兩點(diǎn), ,點(diǎn)M在拋物線上,MA⊥MB.
(1)求p的值;
(2)求點(diǎn)M的橫坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)函數(shù)f(x)=( )
.
(1)求函數(shù)f(x)的值域
(2)求函數(shù)的單調(diào)遞減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)=(log2x)2﹣2alog2x+b(x>0).當(dāng)x= 時(shí),f(x)有最小值﹣1.
(1)求a與b的值;
(2)求滿足f(x)<0的x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)P是橢圓 上的一點(diǎn),F(xiàn)1和F2是焦點(diǎn),且
,則△F1PF2的周長為 , △F1PF2的面積為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)=x2+bx+c,且f(﹣3)=f(1),f(0)=0.
(1)求函數(shù)f(x)的解析式;
(2)若函數(shù)g(x)=f(x)﹣(4+2a)x+2,x∈[1,2],求函數(shù)g(x)的最值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com