已知半徑為2,圓心在直線上的圓C.
(Ⅰ)當(dāng)圓C經(jīng)過(guò)點(diǎn)A(2,2)且與軸相切時(shí),求圓C的方程;
(Ⅱ)已知E(1,1),F(1,-3),若圓C上存在點(diǎn)Q,使,求圓心的橫坐標(biāo)
的取值范圍.
(Ⅰ);(Ⅱ)
【解析】
試題分析:(Ⅰ)因?yàn)樵脑谥本上故可設(shè)原心為
,則可根據(jù)圓心和圓上的點(diǎn)的距離為半徑列出方程。又因?yàn)榇藞A與
軸相切則
,解方程組可得
。(Ⅱ)設(shè)
,根據(jù)
可得
,即點(diǎn)
在直線
上。又因?yàn)辄c(diǎn)
在圓
上,所以直線
與圓
必有交點(diǎn)。所以圓心到直線的距離小于等于半徑。
試題解析:解: (Ⅰ)∵圓心在直線上,
∴可設(shè)圓的方程為,
其圓心坐標(biāo)為(; 2分
∵圓經(jīng)過(guò)點(diǎn)A(2,2)且與軸相切,
∴有
解得,
∴所求方程是:. 5分
(Ⅱ)設(shè),由
得:
,解得
,所以點(diǎn)
在直線
上。
因?yàn)辄c(diǎn)在圓
:
上,所以圓
與直線
必有交點(diǎn)。
因?yàn)閳A圓心到直線
的距離
,解得
。
所以圓的橫坐標(biāo)
的取值范圍是
。
考點(diǎn):圓的方程,直線和圓的位置關(guān)系。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
OP |
OQ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com