8天堂资源在线,国产成人久久av免费高潮,国产精品亚洲综合色区韩国,国产欧美va天堂在线观看视频,xx色综合

精英家教網 > 高中數學 > 題目詳情

【題目】已知為橢圓的右焦點,點上,且軸.

(1)求的方程;

(2)過的直線兩點,交直線于點.判定直線的斜率是否依次構成等差數列?請說明理由.

【答案】(1); (2)見解析.

【解析】

(1)將點的坐標代入橢圓方程,結合橢圓方程中a,b,c的關系,求出a2,b2的值,進而求得橢圓標準方程;

(2)聯(lián)立橢圓方程和直線方程,利用一元二次方程的根與系數的關系,結合斜率公式,證得,進而問題得證.

(1)因為點上,且軸,所以,

,得,

故橢圓的方程為

(2)由題意可知直線的斜率存在,設直線的的方程為,

,得的坐標為

,得

,則有.①

設直線的斜率分別為,

從而

因為直線的方程為,所以,

所以

. ②

把①代入②,得

,所以,故直線的斜率成等差數列.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,長方體ABCDA1B1C1D1中,DADC2,,EC1D1的中點,FCE的中點.

1)求證:EA∥平面BDF;

2)求證:平面BDF⊥平面BCE;

3)求二面角DEBC的正切值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】ABC,a=7,b=8,cosB= –

A;

AC邊上的高

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)當時,判斷是否為的極值點,并說明理由;

(2)記.若函數存在極大值,證明:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某中學為了解中學生的課外閱讀時間,決定在該中學的1200名男生和800名女生中按分層抽樣的方法抽取20名學生,對他們的課外閱讀時間進行問卷調查,F(xiàn)在按課外閱讀時間的情況將學生分成三類:A類(不參加課外閱讀),B類(參加課外閱讀,但平均每周參加課外閱讀的時間不超過3小時),C類(參加課外閱讀,且平均每周參加課外閱讀的時間超過3小時)。調查結果如下表:

A類

B類

C類

男生

x

5

3

女生

y

3

3

(I)求出表中x,y的值;

(II)根據表中的統(tǒng)計數據,完成下面的列聯(lián)表,并判斷是否有90%的把握認為“參加課外閱讀與否”與性別有關;

男生

女生

總計

不參加課外閱讀

參加課外閱讀

總計

(III)從抽出的女生中再隨機抽取3人進一步了解情況,記X為抽取的這3名女生中A類人數和C類人數差的絕對值,求X的數學期望。

附:K2=)

P(K2≥k0

0.10

0.05

0.01

k0

2.706

3.841

6.635

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系中,曲線的參數方程為為參數).M是曲線上的動點,將線段OM繞O點順時針旋轉得到線段ON,設點N的軌跡為曲線.以坐標原點O為極點,軸正半軸為極軸建立極坐標系.

(1)求曲線的極坐標方程;

(2)在(1)的條件下,若射線與曲線分別交于A, B兩點(除極點外),且有定點,求的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知定義在R上的函數滿足,設圖象的交點坐標為,若,則的最小值為____

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(本小題滿分12分)在一個選拔項目中,每個選手都需要進行4輪考核,每輪設有一個問題,能正確回答者進入下一輪考核,否則被淘汰。已知某選手能正確回答第一、二、三、四輪問題的概率分別為、、,且各輪問題能否正確回答互不影響。

)求該選手進入第三輪才被淘汰的概率;

)求該選手至多進入第三輪考核的概率;

)該選手在選拔過程中回答過的問題個數記為,求隨機變量的分布列和期望。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】14分)已知a,b為常數,且a≠0,函數fx=﹣ax+b+axlnx,fe=2e=2.71828…是自然對數的底數).

I)求實數b的值;

II)求函數fx)的單調區(qū)間;

III)當a=1時,是否同時存在實數mMmM),使得對每一個t∈[m,M],直線y=t與曲線y=fx)(x∈[,e])都有公共點?若存在,求出最小的實數m和最大的實數M;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案