8天堂资源在线,国产成人久久av免费高潮,国产精品亚洲综合色区韩国,国产欧美va天堂在线观看视频,xx色综合

精英家教網 > 高中數學 > 題目詳情
設f(x)=xlnx,若f'(x0)=3,則x0=( 。
分析:先利用導數乘法的運算法則求函數f(x)的導函數,再解對數方程lnx0=2即可
解答:解:f′(x)=lnx+x•
1
x
=1+lnx
∵f'(x0)=3,∴1+lnx0=3,即lnx0=2
∴x0=e2
故選A
點評:本題考察了導數的四則運算法則,及簡單的對數方程的解法,解題時要熟記導數運算法則和對數運算法則,準確運算
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

13、設f(x)=xlnx,若f′(x0)=2,則x0=
e

查看答案和解析>>

科目:高中數學 來源: 題型:

設f(x)=xlnx,若f′(x0)=2,則x0=( 。
A、e2
B、e
C、
ln2
2
D、ln2

查看答案和解析>>

科目:高中數學 來源: 題型:

設f(x)=xlnx,g(x)=ax3(x∈R).
(1)求f(x)的極值;
(2)設F(x)=f(x)-g(x),討論函數F(x)的零點個數.

查看答案和解析>>

科目:高中數學 來源: 題型:

設f(x)=xlnx+1,若f'(x0)=2,則f(x)在點(x0,y0)的切線方程為
2x-y-e+1=0
2x-y-e+1=0

查看答案和解析>>

科目:高中數學 來源: 題型:

設f(x)=xlnx;對任意實數t,記gt(x)=(1+t)x-et
(1)判斷f(x),gt(x)的奇偶性;
(2)(理科做)求函數y=f(x)-g2(x)的單調區(qū)間;
  (文科做)求函數y=log0.1(g2(x))的單調區(qū)間;
(3)(理科做)證明:f(x)≥gt(x)對任意實數t恒成立.

查看答案和解析>>

同步練習冊答案